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Towards a GeoSocial Landmark Identification Model 
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Summary: Research in human wayfinding shows, that integrating landmarks in route descriptions 

increases the success rate of navigational tasks for pedestrians. The salience of such landmarks is 

commonly measured using so called landmark dimensions. However, data collection for their 

attributes is difficult and time-consuming. A new promising data source emerged with the rise of 

geolocated social media content. We present a model to identify landmarks based on a social 

dimension using this content. We calculate a GeoSocial Score of objects in Augsburg using measures 

harvested from geosocial data and compare the outcomes with results of a survey. We conclude that 

geosocial data represent a reliable source of information to identify landmarks for pedestrians.

Introduction 

Landmarks are important elements for the communication of route descriptions, the 
orientation in, and navigation through space (Lynch, 1960; Allen, 2000; Michon and Denis, 
2001). Most authors dealing with landmark identification build on the definitions of 
Sorrows & Hirtle (1999) and Raubal & Winter (2002) for landmark dimensions. These are 
the visual, the semantic, and the structural dimension. Other approaches focus on 
perceptual, cognitive, and contextual dimensions to model landmark salience (Caduff & 
Timpf, 2008). However, all of these approaches have in common that they need a wealth of 
different data sources to collect the information for all the attributes of these dimensions 
(Nuhn & Timpf, 2017). Due to the lack of data density, landmarks have hardly been picked 
up in actual, running navigation systems for pedestrians (Richter, 2017). The only service 
so far offering landmark-based verbal instructions is Whereis (Duckham et al., 2010). The 
underlying approach uses categories, which requires only data of an object’s type and 
geographic location to determine an object's suitability as a landmark. However, this 
approach is based on the exploitation of points of interest (POIs) while landmarks are not 
limited to POIs (Richter & Winter, 2014). 

These drawbacks can be overcome by using the social dimension, which describes “the way 
an object is practiced and recognised by a person or a group of people” (Quesnot & Roche, 
2014 (p.1)). Since we are living in a ’geo-data-rich society’ (Boulos, 2005), geospatial 
information to feed the social dimension is more accessible than ever. Volunteered 
Geographic Information that is produced by a large number of private citizens (Goodchild, 
2007) includes data collected in social web platforms, such as Google place types (Google 
Place Types, 2022) and Foursquare (Foursquare, 2022). Quesnot & Roche (2014) argue 
that geosocial data represent a reliable source of information to precisely measure landmark 
semantic salience in an urban area. Their approach is based on Social Location Sharing, 
which consists of a check-in, which claims “I am/was at that place”. Quesnot & Roche 
(2014) do not include Google Places API because it does not provide the information about 
check-ins. However, the Google place type, which describes an objects function, is a 
valuable source to identify social landmarks. We base our calculations on the user-
generated Google place database, which is regularly updated by internet users (Quesnot & 
Roche, 2014). Furthermore, we consider Foursquare data, since they are a valuable source 
for the extraction of attributes regarding social prominence. We develop a GeoSocial model 
considering a social dimension and argue, that the model fed with data from Google place 
types and Foursquare is capable to identify landmarks, which would also be selected by 
humans. We apply the model in a pedestrian navigation scenario, where landmarks should 
be identified to be included in route directions. Finally, we evaluate the model by 
comparing the outcomes to the results of a survey. 
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GeoSocial Model – Basics 

Our model considers the attributes place type, uniqueness, social prominence, and social 
activity to quantify the social dimension. We assign salience values to each place, based on 
these attributes and calculate a GeoSocial Score (GSS) to quantify the social salience of an 
object at a decision point (DP). 

Place Type 

We extract place types from Google Places database within a 50 meter radius around a DP. 
We assign all these places a salience value, based on the object’s category of place type. 
Rousell and Zipf (2017) derive OSM place types, which are stored in each features attribute 
table, and reclassify them into broader, more general place type categories. They assign a 
weight value to each category, based on previous work of Duckham et al. (2010). We adapt 
their categorisation and transfer it to Google place types (Tab. 1). We introduce the weight 
values as tweight in our model. 

Tab. 1: Place type category weight system. 

Category tweight Google Place Types 

shopping 0.8 clothing store, drugstore, jewelry store 
grocery 0.8 supermarket, grocery store 

gastronomy 0.7 café, bar, restaurant, bakery 

health 0.5 doctor, dentist, pharmacy 

office 0.5 insurance agency, lawyer, government office 

service 0.5 hair care, travel agency, bank 

transportation 1.0 rail station, transit station 

religion 1.0 church, place of worship 

leisure 1.0 park, plaza, sport facilities 

tourist attraction 1.0 fountain, monument, theater 

Uniqueness 

Uniqueness investigates places and objects, where their associated function stands out in 
contrast to nearby objects (Quesnot and Roche, 2014). Following Rousell and Zipf (2017) 
and Quesnot and Roche (2014), we calculate the uniqueness score of an object as the ratio 
between the amount of places with the same place type (LMtype) and the total amount of 
objects in a 50 m radius at a single DP (LMtotal). The result of this is subtracted from 1. In 
order to utilise the uniqueness metric in the GeoSocial Score as a weight multiplier, we 
apply a normalisation function to re-scale all values into a new range of 0.7 - 1.0. We 
choose the lower bound of uniqueness higher than 0 because of the multiplication of 
factors. We set the lower bound to 0.7 to avoid an overly low GSS which would result in 
case we would, e.g., use a lower bound of 0.001. Highly unique candidates get a unique 
value close to 1, while less unique places are close to a value of 0.7 ( Eq. 1). 

unique = 1 – (LMtype/LMtotal)  norm0.7-1.0. (1) 

Social Prominence 

Bernardini and Peeples (2015) describe prominence as the ’Viewership’ of elements in the 
landscape, in other words, the total number of viewers. In case an environmental feature has 
a great viewership, it is referenced a lot of times and thus perceived as salient. Each 
registered Google place can be reviewed by rating the place and leaving a written review. 
We apply a normalisation method per set of objects at a DP. The most reviewed place at a 
DP gets a weight value of 1.0, while the lowest rated place gets a weight value of 0.5 (Eq. 
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2). This means that the normalisation range for social prominence is with 0.5 higher than 
the range for uniqueness, since we consider social prominence as more important in this 
work. 

prominence = LMreview  norm0.5-1.0. (2) 

Social Activity 

The two indicators derived from Foursquare are the amount of likes and the number of 
uploaded photos of a place. These indicators reflect the social activity of objects (Eq. 3). At 
each DP the range of objects’ social activity score is re-scaled into a range of 1.0 for the 
lowest values and 1.3 for the highest values. This is due to the fact, that some places do not 
have any Foursquare data, namely no measurable social activity. This way, they remain 
unchanged when multiplied by a 1.0 weight but are normalised to the same range size (0.3) 
as uniqueness. 

activity = LMlikes + LMphotos  norm1.0-1.3. (3) 

GSS 

We multiply the weights for the place type, the uniqueness, as well as the social 
prominence and activity to obtain the GSS (Eq. 4) for each object at a DP. 

GSS = tweight ∗ uniq ∗ prominence ∗ activity (4) 

Eq. 5 shows the calculation steps for a ’Starbucks’ café. We apply a tweight = 0.7 for the 
place type category gastronomy (Tab. 1). There are 5 other objects at the DP, making the 
café the least unique place type (uniqueness = 0.7). The ’Starbucks’ café has 510 reviews 
(prominence = 0.61) and 23 likes and fotos (activity = 1.018). The resulting GSS is 0.30. 

GSSStarbucks = 0.7 ∗ 0.7∗ 0.61∗ 1.02 = 0.30 (5) 

Fig. 1: Investigation area. 
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GeoSocial Model – Application 

In this chapter we demonstrate the GeoSocial Model. We use a part of the inner-city of 
Augsburg as investigation area (Fig. 1). We harvested the data for this study between 
September and October 2021 from Google Places and Foursquare.

Place Type and Uniqueness 
We identify 116 places in the investigation area. The place type and the resulting place type 
uniqueness are the first parameters in the GSS. With a total amount of 473 tags, each object 
has 4 tags on average. We classify the place types into the place type categories (Tab. 1). 
Fig. 2 shows the overall distribution of place type categories. The high number of shopping 
(47) and gastronomy (25) places is typical for pedestrian downtown areas.

Fig. 2: Place type category in the investigation area. 

Social Prominence 

In order to eliminate noise that derives from Google Places, all places in the investigation 
area with less than 10 reviews are not used for further analysis. In total, 16904 reviews 
were extracted. Tab. 2 shows the most reviewed places on Google by place type category, 
highlighting the best place per place type. The ’McDonalds’ is the most prominent place in 
the investigation area followed by the ’Starbucks’ and ’Dunkin’ Donuts’. All three of them 
are listed in the leading quick service restaurant companies of Germany by 2019, with the 
same hierarchical relationship (Statista, 2019). This may indicate that the social prominence 
of gastronomy places is linked to the quantitative popularity in Germany. 

Tab. 2: Social prominence - most reviewed places by type. 

Name Category Reviews 

McDonald’s Restaurant Gastronomy 2376 

Thalia Shopping 1577 

Travel agency Service 523 

REWE Grocery 479 

St. Anne’s Church Religion 295 

Weberhaus Tourist Attraction 204 

Königsplatz Parc Leisure 187 

OZA Health 142 

Stadtwerke Customer Centre Office 108 

Moritzplatz Transportation 22 
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The three most reviewed shopping places are the ’Thalia’ bookstore (1577 reviews), 
’SCHMID’ (1128) clothing store, and the ’o2 Shop’ (898). All of these mentioned places 
are chains that are present in several cities. This may also indicate that the quantitative 
popularity in Germany is linked to the local social prominence in the investigation area. 
More regional and local points-of-interest like St. Anne’s Church (295), Weberhaus (204), 
or Moritzplatz (22) tend to have lower social prominence values. 

Social Activity 

Out of 116 places in the investigation area, 31 places show Social Activity derived from 
Foursquare database. In other words: only 26.72% of Google Places have associated 
Foursquare activity data. All places with type tourist_attraction in the investigation area 
show social activity. These places have on average 4.8 uploaded photos. Most photos are 
uploaded for the Fuggerdenkmal (Fig. 5). The other place types show similar patterns, with 
gastronomy and shopping covering 67.7% of all social activities. 

GSS 

Fig. 3 shows a scatter plot of the GSS for all 116 places. It is visible that most shopping 
places show low scores, with a few exceptions. These exceptions are prominent and draw 
great social significance. Gastronomy places scatter the most with diverse GSSs across the 
whole scale. Health, office, and service places reveal to be not socially active. The 
remaining place types tend to achieve higher scores of the GSS (tourist_attraction, grocery, 
leisure, and religion). 

Fig. 3: GSS by place type. 

GeoSocial Model – Evaluation 

We compare the results of the GeoSocial model to the results of a survey. 51 participants 
selected at DPs in the inner-city (Fig. 1) objects useable as a landmark (Nuhn, 2020). We 
assign the number how often it was selected as a landmark to each object in the 
investigation area and compare this metric to the normalised GSS (highest GeoSocial Score 
at DP is 100%, the lowest is 0%). Then, we calculate a Pearson Correlation Coefficient. 
The  coefficient indicates a moderate correlation (0.613) (Asuero et al., 2006). This 
suggests, that the GSS outputs similar objects as landmarks as the survey participants 
choose, but some adaptations might be needed in future work (see Conclusion and 
Outlook). Tab. 3 – Tab. 5 show the results of the comparison for 3 selected DPs (Fig. 4 – 
Fig. 6). 

• DP 3: The model and the survey participants identify both the cultural building ’Weberhaus’
as most prominent landmark (Tab. 3, Fig. 4). There is one building, which hosts multiple
places belonging to shopping, gastronomy, and transportation (Fig. 4, Moritzplatz). We
select the place with the highest score as a representative for that building polygon since
most people associate one specific function with a building and often may not recognise
multiple functions of a building.

• DP 4: The tourist attraction Fuggerdenkmal achieved the highest GSS and is selected the
most from the survey participants (Tab. 4, Fig. 5). One building has no Google place type
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although it hosts a museum. We extracted place types within a 50 meter radius around a DP. 
However, the Google place of the museum is not located within the radius. This is because 
the place types are located at the centroid of the polygons. Thus, in this case, the GSS 
cannot be calculated. 

• DP 8: St. Anne’s Church reaches the highest GSSs (Tab. 5, Fig. 6). It is not accessible from
the DP and, additionally, is located behind a wall (Fig. 6). We assume that reviews, likes,
and photos have been taken from people who entered the church from a DP on the other site
of the church. The survey participants did not select St. Anne’s Church but “Dr Scherer” as
the most outstanding landmark. We believe that the participants did not select this landmark
because of its health category but because of its function as a bank (Kreissparkasse) which
is recognisable by an explicit mark. One building is missing in both, Google Places and
Foursquare, since it was neither reviewed nor liked. Thus, the GSS cannot be calculated.

Based on these findings we can confirm that the model fed with data from Google place 
types and Foursquare is capable to identify landmarks, which would also be selected by 
humans. However, there might be adjustments necessary to improve the Geoscoial Score, 
which are discussed in the next Section. 

Fig. 4: DP 3. 

Tab. 3: GSS DP 3. 
Name Category Prominence Activity GSS Landmark 

Selection 

Weberhaus Tourist Attraction 204 9 1 42 
Kutscher + Gehr Shopping 129 0 0.33 0 
Moritzplatz Transportation 22 0 0.32 5 
cheapenergy24 Service 132 0 0.17 3 
Dr. Anstett Health 38 0 0.03 1 

Fig. 5: DP 4. 
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Tab. 4: GSS DP 4. 
Name Category Prominence Activity GSS Landmark 

Selection 

Fuggerdenkmal Tourist Attraction 143 14 1 39 
nineOfive Gastronomy 270 3 0.71 6 
Siller&Laar Shopping 70 3 0.21 0 
Perfumery Shopping 71 2 0.21 0 
Hofpfisterei Gastronomy 17 0 0.18 0 
Building (Museum) - - - - 6 

Fig. 6: DP 8. 

Tab. 5: GSS DP 8. 
Name Category Prominence Activity GSS Landmark 

Selection 

St. Anne’s Church Religion 295 23 1 9 
Fountain Tourist Attraction 14 1 0.24 15 
Studio Shopping 43 0 0.08 1 
Dr. Scherer Health 48 0 0.04 23 
Building - - - - 3 

Conclusion and Outlook 

The Geosocial data, Google and Foursquare, represent a reliable source of information to 
identify landmarks for pedestrians. However, several problems still need to be addressed in 
future work. Our attributes are scaled only locally, that is there is always an object with the 
maximum GSS for each DP, independent of the absolute numbers of, e.g., views, likes, or 
photos. Thus, an alternative might be a global GSS for all the decision points. However, 
then, we need to find a solution for DPs where no landmark is identified. Additionally, 
recency of likes and reviews could be considered in future adaptations of the GSS. For 
example, a place with more current ratings could be more prominent than one with older 
ratings. Furthermore, we noticed that sometimes no reviews, likes, or photos are available 
for a specific object (compare DP 8). Moreover, sometimes not the landmark with the 
highest GSS, but another landmark seems more important to humans (compare DP 8). 
Additionally, landmarks with a high GSS might be located at a street intersection but not 
identified as most important for participants, since they are not accessible from the DP 
(compare DP 8). Furthermore, the location of the place type might not fall in a 50 meter 
radius around a DP (compare DP 4), although it could be an important landmark at the DP. 
The landmark dimensions can consider attributes such as accessibility in the structural 
dimension and the availability of explicit marks in the semantic dimension. Thus, the 
combination of our social dimension with the conventional landmark dimensions, seems 
promising for future work. 
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Summary: Wireless networks have become an integral part of our daily lives and lately there is in-
creased concern about privacy and protecting the identity of individual users. In this paper we address 
the evolution of privacy measures in Wi-Fi probe request frames. We focus on the lack of privacy 
measures before the implementation of MAC Address Randomization, and on the way anti-tracking 
measures evolved throughout the last decade. We do not try to reverse MAC address randomization to 
get the real address of the device, but instead analyse the possibility of further tracking/localization 
without needing the real MAC address of the specific users. To gain better analysis results, we intro-
duce temporal pattern matching approach to identification of devices using randomized MAC ad-
dresses. 

Introduction 
The technology that changed our lives the most in last decade is without question the 
introduction of the smartphone. Having internet connection on our person as we move 
through the world has had major impact on both our professional and personal lives. The 
practically constant connection to the internet, be it through cellular data or Wi-Fi, introduces 
a question of how much privacy, locational and otherwise, are people giving up. They are 
often giving up their privacy willingly for the use of services that make their daily lives easier; 
in other cases they do not know who or what may be identifying and/or tracking them. 
Devices using Wi-Fi (also called WLAN) for connecting to the internet are extremely 
common, with most people having at least one around them at all times, for example mobile 
phone, smartwatch, laptop, and smart TVs.  Since the majority of these devices are connected 
to the internet through wireless networks, the issue of privacy and device tracking on those 
networks should be something people are aware of. Our devices are communicating with the 
surrounding world using standardized protocols. For instance, a device in a IEEE 802 
network is uniquely identified by the Media Access Control (MAC) address, which is used 
in all the messages involving the device. The device probe request is a type of wireless frame 
used to gather information about Wi-Fi access points in the proximity of a device. This is 
beneficial to the users as the device can identify and connect to a known access point without 
any user input, to switch to anohter AP with better coverage in a large public Wi-Fi network, 
as well as help with increasing accuracy of geolocation navigation by checking nearby Wi-Fi 
devices and comparing the signal strenght of detected access points with previously detected 
ones at the same location. These probe requests can be a major weak point of a Wi-Fi 
protocol, since they allow for non-cooperative user tracking if the device does not use enough 
privacy measures such as MAC address randomization. 
Tracking using Wi-Fi protocols can vary as they can be used to determine the past 
whereabouts of users, current presence, or both. The past locations of devices can be 
determined if the devices are transmitting the preferred network list (list of the networks the 
device was connected to in the past) which can be matched to location using access point 
databases like WIGLE (2022). The current presence tracking can be done using a 
fingerprinting approach or in the case of devices without randomized MAC addresses, just 
by matching the globally unique MAC addresses of separate probe requests. 
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At the time of writing, most of the major operating systems have implemented some kind of 
privacy protection measures, that are helping to protect users from non-cooperative tracking. 
But the implementations and efficiency of those measures vary. 
In this paper we explore the current state of privacy related measures in probe requests. We 
analyse how the situation has changed since the period before MAC randomization was first 
introduced, and we propose additional measures to further increase privacy. The main 
contribution of this paper is in the new angle of analysing the probe request datasets from the 
temporal point of view. We present a temporal pattern matching approach to identifiying 
devices with randomized MAC addresses through the pattern of their appearances in time. 

Related Work 
The tracking of mobile device users using passive sniffing of probe requests has been a focus 
of research for quite a while now. For example Musa & Eriksson (2012) used probe requests 
for urban mobility tracking. The privacy vulnerability of the probe request frames was 
already proven in several publications by Ningning et al. (2013) or by Cunche et al. (2014) 
prior to the implementation of MAC address randomization. After the introduction of MAC 
address randomization in iOS 8 in 2014 (Vasilevsky et al., 2019), researchers worked to 
determine the inner working of the randomization technique Apple used (Freudiger, 2015). 
In other research the authors focused on determining the real MAC addresses assigned by 
each manufacturer (Martin et al., 2016). Di Luzio et al. (2016) determined the origin of 
people at large events using probe requests collected at 2 political events before elections in 
Italy and results were matching the official voting reports. Matte et al. (2016) provided details 
on bypassing MAC randomization with the use of temporal analysis, by exploiting the device 
specific timings between subsequent probe requests or scan instances. Martin et al. (2017) 
created very deep study of MAC address randomization and explored all the times it fails. 
Gu et. al. (2020) proposed an encryption for 802.11ac devices. 

Current Implementation of MAC Randomization 
Although the IEEE Standards Association Standards Board specified in 2018 a standard 
amendment 802.11aq-2018 (IEEE, 2018) considering randomization of MAC addresses, 
there is still no standard for actual implementation of randomization. This means each and 
every manufacturer and software developer can decide how to implement it in their own 
manner. 
Addresses can be assigned either by the manufacturer or locally by the device network 
controller. The way the address is assigned is differentiated by the 2nd least significant bit of 
the first byte of the MAC address B1 as shown in Figure 1. If the bit is set, the MAC address 
was assigned locally. The least significant bit of the first byte B0 describes if the MAC 
address is unicast or multicast. For the majority of devices, this bit is set to 0. The 
unicast/multicast bit is set to 0 for individual devices and only set to 1 for device groups. This 
makes the distinction between globally unique and randomized MAC address of individual 
devices very simple as the 2nd digit of randomized MAC address in hexadecimal format can 
only be 2 (0010), 6 (0110), A (1010) or E (1110). 

Fig. 1: Structure of MAC address with the functional bits 
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Dataset 
We decided to collect a dataset to perform the analsysis. As we work with real data containing 
personal information, it stays to say that we only approached the analysis from the 
implementation of Wi-Fi protocol, specifically to explore potential privacy issues in current 
implementations. The data collection was limited to only passive capture and store of 802.11 
management frames which we then anonymized before starting with analysis. The 
annonymization is done by hashing last 3 bytes of the MAC address, preffered network list, 
UUID-E and several other fields containing user specific information. From the anonymized 
data we do not observe personally identifiable information. Even though the collected data 
contains both real and randomized MAC addresses, it is not possible for us to match a MAC 
addresses to specific individuals because the analysis was done over annonymized version of 
the dataset, and we did not collect the data with presence in the office or the building. 
To base our research work on up to date data, we collected probe requests at our small office 
for 6 days in December 2021. The office is in the corner of the 5th floor and during peak times 
is occupied by about 15 researchers.. In that time we collected 340,360 probe requests. The 
data was collected using an ESP32 micro controller with connected micro SD card for storage 
of the collected probe requests. The firmware created for the ESP32 micro controller to 
capture probe requests and save them in standardized way readable by the Wireshark and 
similar packet analysis tools is publicly available from a GitLab repository (Bravenec, 2021). 
About 10% of captured probe requests contained WPS (Wi-Fi Protected Setup) sections, 
which provide additional information about the device, starting with device name, 
manufacturer, and model. Since many devices use the name of their owner, this  may pose 
a privacy leak in devices transmitting this additional information which is unnecessary for 
correct functioning of probe request frames. Even sending a device manufacturer name can 
reveal the user identity if the device itself is less common than others (e.g. Susie is the only 
Motorola user here). The most important issues of this WPS section, though, is the presence 
of UUID-E (Universally Unique IDentifier-Enrollee) data which is unique for a device since 
it is acquired using the globally unique MAC address of the device and does not change. 
Devices transmitting probe requests containing UUID-E are then easily localized as their 
globally unique MAC address can be recovered using UUID-E reversal techniques - by 
looking up the globally unique MAC address from hash tables (Martin et al., 2016). 
Therefore, we have hashed that additional information provided in the WPS Section to ensure 
privacy of users. 

Analysis 
In the past, the tracking of mobile devices using only probe requests was not very difficult as 
there were several factors that made identification of a single device fairly straightforward. 
These include nonrandomized MAC addresses, consecutive Sequence Numbers, common 
time difference between 2 probe requests, or extended information in the Information 
Element like supported transfer rates and vendor information. 

MAC addresses 
Even though MAC addresses cannot be used effectively to locate most modern devices, they 
can still be used to identify a single device during a single scan. From the analysis of the data 
collected at our office, the devices do not randomize MAC addresses after every probe 
request. This makes identification of a single scan instance from one device very easy, since 
they keep the same address for the scanning sequence, or multiple sequences. A solution to 
increase privacy would be to randomize the MAC address for every probe request, or at least 
more often than the devices do at the moment. 

Sequence Numbers 
Sequence numbers in probe request packets allow for another opportunity to easily identify 
packets coming from a single device during one scan instance, without the need to check the 
MAC address. The reason for this is the incremental nature of sequence numbers in probe 
requests coming from a single device. Every time the device sends a packet, the sequence 
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number increments by 1. The sequence number can increase by more than 1, which happens 
if a device sends another packet or frame between 2 subsequent probe requests. 
Addressing this issue would be fairly straightforward by using random sequence number for 
each probe request. This, combined with randomization after every probe request, would 
make identification of packets coming from a single device a lot more challenging as new 
techniques for identification through probes would be required. 

Fingerprinting with Information Elements 
To identify devices we collect the device specific information fields available in probe 
requests, out of which we create a single unique identifier (Loh et al. 2008). The information 
element fields in probe requests can contain various additional data, starting with supported 
transfer speeds, information about the vendor of the wireless chip inside of the device, and 
including the connected peripherals and  device name. As mentioned in the section describing 
the dataset, WPS information might also be present, which contains enough information to 
create a unique fingerprint of the device. The biggest issue there is the UUID-E field which 
is unique per device and makes MAC address randomization pointless in devices that 
transmit WPS data, since instead of MAC address the UUID-E can be used to identify 
a device. And that is  without considering UUID-E reversal techniques which can be used to 
determine the globally unique MAC address of the device (Martin et al., 2016). 
For fingerprint creation we use all of the fields that remain constant for one device between 
transmissions. Supported transmission speeds, vendor information, WPS field and others are 
used to create a hash using the SHA512 algorithm. This ensures we have an unique 
fingerprint for information element of all devices. All of the fields in our device fingerprint 
are presented in Table 1, with the frequency of occurrences in the data collected at our office. 
As can be seen, the supported data rates are presented in 100% of collected probe requests, 
with extended list of supported data rates being missing from just 0.05% of the probes. The 
HT Capabilities (802.11n specific information regarding supported frequency bandwidth 
etc.) were also present in a majority of probe requests, followed up by extended capabilities 
and at least 1 vendor specific field, though the most common number of vendor specific fields 
for one probe request in the data collected in our lab was 4, in about 30 % of all probe 
requests. Since devices from the same vendor will have the same vendor specific fields, 
having 4 vendor specific fields the same, increases the probability that the devices are the 
same. 

Fingerprinting SSID lists 
By using previously mentioned techniques, it is easy to differentiate all probe requests sent 
by a single device in a single scan instance. Knowing that all probe requests came from 
a single device then allowed us to list all the different SSIDs in those probe requests. By 
using sets with each SSID represented only once, we can use set similarity as in equation (1) 
to calculate a probability of two devices being in fact a single device by using the transmitted 
SSID list. 

𝑝𝑝 = 𝑠𝑠𝑠𝑠𝑠𝑠(𝐴𝐴) 𝐚𝐚𝐚𝐚𝐚𝐚 𝑠𝑠𝑠𝑠𝑠𝑠(𝐵𝐵)
𝑠𝑠𝑠𝑠𝑠𝑠(𝐴𝐴) 𝐨𝐨𝐨𝐨 𝑠𝑠𝑠𝑠𝑠𝑠(𝐵𝐵)

(1) 

There is also a possibility for the attacker to identify the users directly through the SSIDs 
from the preffered network list, as there is a possibility to match some of the networks directly 
to people (for example SSID of network at university in another country, while we know our 
collegue is the only one around that used to study there). 
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Information Element Included in Probes [%] 
Supported Rates 340360 100.00 
Extended Supported Rates 340198 99.95 
HT Capabilities 312227 91.73 
VHT Capabilities  20252 5.95 
Extended Capabilities 232918 68.43 
Vendor Specific Elements 194801 57.23 

1 Vendor Specific Element  29681 8.72 
2 Vendor Specific Element  47375 13.92 
3 Vendor Specific Element   8661 2.54 
4 Vendor Specific Element 104559 30.72 
5 Vendor Specific Element   4525 1.33 

WPS – UUID-E  35908 10.55 
Total Collected Probe Requests 340360 
Table. 1: Probe request fields used to create device fingerprint and frequency of occurrence in data 

collected in our lab 

Device identification 
Combining the use of non-randomized MAC addresses,  device fingerprint elements, use of 
transmitted SSIDs to differentiate devices, and UUID-E available in the probe requests with 
WPS field,we have enough information to identify a single Wi-Fi scan instance (Algorithm 
1) as well as reappearance of a device. Even with MAC randomization, the information 
elements in the probe requests allow the adversary to identify devices. 
After identifying the Wi-Fi scan instances, we start with device identification. Here we first 
check if the MAC addresses of 2 separate instances are the same. If they are we can consider 
the instances as the same device. If the MAC addresses are randomized or different from 
each other, we check for the presence of WPS fields, and subsequently check the UUIDE 
field and evaluate if the device is the same or not. In case the WPS field is not included and 
MAC addresses are not matching, we determine the similarity using the information elements 
section of probe requests and calculate a similarity score between the two preferred network 
lists. If the similarity is higher than a set threshold we can consider the scan instances to be 
from the same device. Since the preffered network list revealed through probe requests is in 
majority of the cases quite short and in many cases can be incomplete, the threshold was set 
to >0.5. Since with two transmitted SSIDs in each scan instance, one identical SSID will 
result in the similarity of 0.5. And since Wi-Fi networks have quite unique names, we take 
devices with at least two matching SSIDs as similar devices. The process of identifying 
a single device is shown in Algorithm 2. 

Temporal Analysis 
One of the more difficult parameters to mask for a single device sending multiple probe 
requests is the time difference between 2 probe requests. From our analysis of the Sapienza 
Probe Request dataset created by Barbera et. al (2013), slightly more than 98 % of subsequent 
probe requests sent by a single device are transmitted less than 65 milliseconds apart. These 
bursts of transmitted probe requests can be used for fingerprinting of the device. This is useful 
in conjunction with incrementing sequence numbers to distinguish two different devices and 
will be a potential threat to the users in the future, since the incrementing sequence number 
could reveal one device using multiple MAC addresses after every probe request. 
We did not use the time difference between two probe requests, since devices do not change 
their MAC address during the scan instance. Instead we used different approach to time 
analysis. We used all of the similar device data that we got during device identification and 
analysed the recurrent appearances of each device and possible similarity to others. This way 
we discovered a pattern that allowed us to identify cases where single device looked like 
several devices. We did this by considering scan instance appearances of one device and 
clustering them together based on time. We then compared the number of clusters between 
devices. In case two devices had the same amount of appearance clusters, we checked the 
overlay between clusters. Subsequently we decided if the devices were in the end single 
device misidentified as many, or skip it it and move to the next device. 
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Algorithm 1 Scan Instance Identification 
1: variables 
2:   𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝.𝑚𝑚𝑚𝑚𝑚𝑚, MAC address of the probe request 
3:   𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. ℎ𝑚𝑚𝑎𝑎_𝑤𝑤𝑝𝑝𝑎𝑎, Probe request with WPS field 
4:   𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝.𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑝𝑝, UUID-E of the probe request 
5:   𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. 𝑢𝑢𝑝𝑝, Information Element of the probe request 
6:   𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. sn, Sequence number of the probe request 
7: end variables 
8: if 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝1.𝑚𝑚𝑚𝑚𝑚𝑚 =  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2.𝑚𝑚𝑚𝑚𝑚𝑚 then 
9:   if 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝1. ℎ𝑚𝑚𝑎𝑎_𝑤𝑤𝑝𝑝𝑎𝑎 𝐚𝐚𝐚𝐚𝐚𝐚 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2. ℎ𝑚𝑚𝑎𝑎_𝑤𝑤𝑝𝑝𝑎𝑎 then 

10:     if 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝1.𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑝𝑝 =  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2.𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑝𝑝 then 
11:       return True ⊳ True - Same instance 
12:     else 
13:       return False ⊳ False - Different instance 
14:     end if 
15:   end if 
16:   if 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝1. 𝑢𝑢𝑝𝑝 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2. 𝑢𝑢𝑝𝑝 then 
17:     if 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝1. 𝑎𝑎𝑠𝑠 < 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2. 𝑎𝑎𝑠𝑠 < 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝1. 𝑎𝑎𝑠𝑠 + 5 then 
18:       return True ⊳ True - Same instance 
19:     else 
20:       return False ⊳ False - Different instance 
21:     end if 
22:   else 
23:     return False ⊳ False - Different instance 
24:   end if 
25: else 
26:   return False ⊳ False - Different instance 
27: end if 

Algorithm 2 Device Identification 
1: variables 
2:     𝑢𝑢𝑠𝑠𝑎𝑎𝑖𝑖𝑚𝑚𝑠𝑠𝑚𝑚𝑝𝑝.𝑚𝑚𝑚𝑚𝑚𝑚, MAC address of the instance 
3:     𝑢𝑢𝑠𝑠𝑎𝑎𝑖𝑖𝑚𝑚𝑠𝑠𝑚𝑚𝑝𝑝.ℎ𝑚𝑚𝑎𝑎_𝑤𝑤𝑝𝑝𝑎𝑎, Instance with WPS field 
4:     𝑢𝑢𝑠𝑠𝑎𝑎𝑖𝑖𝑚𝑚𝑠𝑠𝑚𝑚𝑝𝑝.𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑝𝑝, UUID-E of the instance 
5:     𝑢𝑢𝑠𝑠𝑎𝑎𝑖𝑖𝑚𝑚𝑠𝑠𝑚𝑚𝑝𝑝. 𝑢𝑢𝑝𝑝, Information Element of the instance 
6:     𝑢𝑢𝑠𝑠𝑎𝑎𝑖𝑖𝑚𝑚𝑠𝑠𝑚𝑚𝑝𝑝. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎, List of SSIDs from one instance 
7:     𝑖𝑖ℎ𝑝𝑝𝑝𝑝𝑎𝑎ℎ𝑝𝑝𝑜𝑜𝑢𝑢, Minimum similarity threshold 
8: end variables 
9: if 𝑢𝑢𝑠𝑠𝑎𝑎𝑖𝑖𝑚𝑚𝑠𝑠𝑚𝑚𝑝𝑝1.𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑢𝑢𝑠𝑠𝑎𝑎𝑖𝑖𝑚𝑚𝑠𝑠𝑚𝑚𝑝𝑝2.𝑚𝑚𝑚𝑚𝑚𝑚 then 

10:     return True ⊳ True - Same device 
11: else if 𝑢𝑢𝑠𝑠𝑎𝑎𝑖𝑖𝑚𝑚𝑠𝑠𝑚𝑚𝑝𝑝1. ℎ𝑚𝑚𝑎𝑎_𝑤𝑤𝑝𝑝𝑎𝑎 and 𝑢𝑢𝑠𝑠𝑎𝑎𝑖𝑖𝑚𝑚𝑠𝑠𝑚𝑚𝑝𝑝2. ℎ𝑚𝑚𝑎𝑎_𝑤𝑤𝑝𝑝𝑎𝑎 then 
12:     if 𝑢𝑢𝑠𝑠𝑎𝑎𝑖𝑖𝑚𝑚𝑠𝑠𝑚𝑚𝑝𝑝1.𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑝𝑝 = 𝑢𝑢𝑠𝑠𝑎𝑎𝑖𝑖𝑚𝑚𝑠𝑠𝑚𝑚𝑝𝑝2.𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑝𝑝 then 
13:         return True ⊳ True - Same device 
14:     else 
15:         return False ⊳ False - Different device 
16:     end if 
17: else if 𝑢𝑢𝑠𝑠𝑎𝑎𝑖𝑖𝑚𝑚𝑠𝑠𝑚𝑚𝑝𝑝1. 𝑢𝑢𝑝𝑝 = 𝑢𝑢𝑠𝑠𝑎𝑎𝑖𝑖𝑚𝑚𝑠𝑠𝑚𝑚𝑝𝑝2. 𝑢𝑢𝑝𝑝 then 

18:     𝑝𝑝 =  
𝑎𝑎𝑝𝑝𝑖𝑖(𝑢𝑢𝑠𝑠𝑎𝑎𝑖𝑖𝑚𝑚𝑠𝑠𝑚𝑚𝑝𝑝1. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎) 𝐚𝐚𝐚𝐚𝐚𝐚 𝑎𝑎𝑝𝑝𝑖𝑖(𝑢𝑢𝑠𝑠𝑎𝑎𝑖𝑖𝑚𝑚𝑠𝑠𝑚𝑚𝑝𝑝2. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎)
𝑎𝑎𝑝𝑝𝑖𝑖(𝑢𝑢𝑠𝑠𝑎𝑎𝑖𝑖𝑚𝑚𝑠𝑠𝑚𝑚𝑝𝑝1. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎) 𝐨𝐨𝐨𝐨 𝑎𝑎𝑝𝑝𝑖𝑖(𝑢𝑢𝑠𝑠𝑎𝑎𝑖𝑖𝑚𝑚𝑠𝑠𝑚𝑚𝑝𝑝2. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎)  

19:     if 𝑝𝑝 >  𝑖𝑖ℎ𝑝𝑝𝑝𝑝𝑎𝑎ℎ𝑝𝑝𝑜𝑜𝑢𝑢 then 
20:         return True ⊳ True - Same device 
21:     else 
22:         return False ⊳ False - Different device 
23:     end if 
24: else 
25:     return False ⊳ False - Different device 
26: end if 
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Results 
From the 340,360 probe requests collected at our office, we identified in total 125,983 scan 
instances. After following Algorithm 2, we got 1023 devices as is represented in Figure 2a). 
As a single instance we count any single probe request or burst of probe requests according 
to Algorithm 1. These instances were then clustered based on their similarity following the 
Algorithm 2. This way we were able to match at least two instances to a single device. If the 
tested instance showed no similarity to others, that instance was discarded as a single instance 
device that we had no way to track or to locate. 
For devices that do not randomize their MAC addresses, the tracking is very effective and 
we can easily see when the device was inside of our office or in its proximity. Reason being, 
the unique identifier is the MAC address, which never changed. Due to this we were able to 
identify a significant number of devices that could be easily tracked and analysed for presence 
patterns. Between those devices were also a few that never left the proximity of the probe 
request sniffer as well as some that showed up in monitored range only for a few minutes. 
As presented in Figure 2a), 212 devices did not use MAC randomization. As an example 
comparison of presence in time for 8 such devices is shown in Figure 3.a). As a single 
instance we count any single probe request or burst of probe requests according to 
Algorithm 1. These instances were then clustered based on their similarity following the 
Algorithm 2. This way we were able to match at least two instances to a single device. If the 
tested instance showed no similarity to others, that instance was discarded as a single instance 
device that we had no way to track or to locate. 
For devices that do not randomize their MAC addresses, the tracking is very effective and 
we can easily see when the device was inside of our office or in its proximity. Reason being, 
the unique identifier is the MAC address, which never changed. Due to this we were able to 
identify a significant number of devices that could be easily tracked and analysed for presence 
patterns. Between those devices were also a few that never left the proximity of the probe 
request sniffer as well as some that showed up in monitored range only for a few minutes. 
As presented in Figure 2a), 212 devices did not use MAC randomization and the example of 
presence in time for 8 devices is shown in Figure 3. 

Fig. 2: Dataset information and device identification: a) Probe Requests, Identified Scan Instances 
and Identified Devices, b) Identified Devices before and after Temporal pattern Matching 
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Fig. 3: Occurrence of several devices identified by the usage of globally unique MAC address 

The identification of devices randomizing MAC addresses is more complicated, but despite 
MAC randomization making the process more difficult, we were able to identify many 
devices using  the techniques mentioned before in the Analysis section. The results of our 
analysis can be seen on 8 devices using randomized MAC address in Figure 4. Even with the 
more complicated approach to identification, from the resulting data, the analysis of user 
presence is still possible. 
The Algorithm 2 provides us with instances clustered as one device. The instance matching 
is not 100% accurate and in some cases, especially in those considering devices with 
randomized MAC addresses, can misidentify a single device as several devices. Using the 
Algorithm 2, we matched the 125,983 instances to 1023 devices, which can be seen in 
Figure 2a). After the instance matching, we used  the temporal analysis we proposed on the 
identified devices. We managed to detect similarity in between 498 misidentified devices, 
and reduce this amount to only 74 devices using MAC randomization. 313 devices with 
locally assigned MAC addresses did not match temporal pattern of other devices. The amount 
of devices with locally assigned MAC address before and after temporal pattern matching 
can be seen in Figure 2b). The probe request transmission patterns were quite closely 
matching each other, as can be seen on Figure 5, which led us to identifying these 
appearances as a single device or single user carrying multiple devices. 

Fig. 4: Occurrence of several devices identified despite the use of MAC randomization 
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Fig. 5: Occurrence of single device misidentified as multiple devices, later identified as single device 
through the similarity in temporal patterns 

Conclusions and Future Work 
In this paper we explored the current state of privacy regarding probe requests in the 802.11 
standard using our captured dataset of probe requests. Through deterministic methods we 
explored the possibilities to bypass and identify devices without the need for using the 
globally unique MAC address. From our results we managed to track many devices with and 
without locally assigned MAC addresses. 
We also introduced an approach to use temporal pattern matching to identify device 
appearing as several devices due to the use of MAC address randomization. Using this 
trchnique we managed to reduce 498 identified devices to just 74. This makes the temporal 
pattern matching quite an effective technique for detecting devices despite using MAC 
address randomization. 
For the future we plan to continue the exploration of privacy with probe requests and we plan 
to collect and publish a new  probe request dataset. We also plan to release a small dataset 
without the use of anonymization techniques, from our controlled environment and with 
consent of everyone involved in the data capture. 
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Summary: We present a first exploratory analysis of app usage collected from 38 participants with 

the tappigraphy approach. In addition to collecting tapping data of our participants, we registered the 

GPS locations during their phone sessions. Our analysis entails the density estimation of smartphone 

session usage and the inspection of potential effects of distance from the home location on participants' 

number of taps in apps, differences in the number of taps on map and other apps, and finally on time 

spent on map apps. We found different behavioural patterns of mobile app usage on an individual level. 

However, overall, there are no significant differences in tap density across map and other app 

categories over the distance from home. Nonetheless, we argue that these preliminary results are 

crucial to investigate app usage behaviour on smartphones further and put a solid basis on the 

validation of tappigraphy as a method in the field of LBS and GIScience. 

Introduction 

Mobile devices, such as smartphones and tablets, have become pervasive in modern life. 

Many people use map apps as their primary source of geographic information for navigating, 

spatial decision-making, and problem-solving. Surprisingly, little is known about where, 

when, and how those map apps are used (Reichenbacher et al., 2022). Ecologically valid user 

studies on mobile map usage are rare, and map use is approximated by general and aggregated 

app download numbers or self-reports on smartphone usage. Both are not able to capture 

everyday map app usage in geographic space. Thus, knowledge of such behaviour is urgently 

needed in the fields of location-based services (LBS) and GIScience to support the user-

centred design and development of future human and context-dependent map apps, as already 

addressed in several recent research agendas (see Huang et al., 2018, Thrash et al., 2019). To 

date, the most comprehensive field study on mobile map usage is the one from Savino et al. 

(2021), where data on Google Maps interactions were collected with a wrapper app 

MapRecorder. However, MapRecorder could not track in-app navigation and smartphone 

apps in general. Reichenbacher and colleagues (2022) recently used, for the first time, 

tappigraphy to obtain smartphone app usage data in everyday situations as a method for 

continuous, unobtrusive collection of 'natural', ecologically valid smartphone touch patterns. 

Tappigraphy has been developed in and, so far, used in the field of neuroscience (e.g., for 

quantifying hidden variables such as sleep, cognitive processing speed, and disease activity; 

Balerna & Ghosh, 2018; Borger et al., 2019; Duckrow et al., 2021; Huber & Ghosh, 2021). 

However, tappigraphy could be a promising ambulatory or ecological momentary assessment 

(EMA) method to explore mobile geographic information usage behaviour. Here, we used 

the same method as Reichenbacher et al. (2022) to collect and further analyse taps on apps 

in participants' smartphones to explore spatial and temporal tapping patterns and to detect 

behavioural patterns according to their distance from home location. With tappigraphy as 

EMA, we can now easily collect map app usage behaviour on an individual level. Analysing 

the distance-dependent extent and type of map app usage could provide insights into when 

people use map-based information and for which purpose (e.g., wayfinding, exploring, 

planning, etc.). Such knowledge could help in designing more customised map apps. 

We begin our exploratory analysis by studying app usage in geographic space by exploring 

distance effects before investigating the differences between two main categories of apps 

(map apps and other apps) as the first step toward a better understanding of everyday map 
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usage behaviour. We argue that this exploratory analysis is crucial to validating tappigraphy 

as a method to detect relevant information regarding mobile app usage behaviour and to set 

the basis for identifying typical usage scenarios and later clarifying generalisable interaction 

patterns, especially for mobile geographic information apps. 

Methods 
To shed some light on mobile app usage, we collected smartphone app usage data from 42 

participants between February 2021 and April 2022. Participants were recruited through 

mailing lists, announcements through our community network and publishing the call on our 

department and university website. Participants did not receive any financial remuneration, 

but they participated in a raffle for a tablet. By registering on our project website and giving 

consent to the study terms, participants received a randomised code to be identified and were 

instructed to download the free MapOnTap app from the Google Play Store and install it on 

their smartphones. The app is only available for the Android operating system and is based 

on a tapping recording app called Tap Counter (QuantActions Sàrl) running in the 

background of their smartphones. Note that we have no knowledge about our participants 

than their assigned code by the ambulatory assessment approach of our data collection and 

by privacy protection. Participants were then using their smartphones as usual for at least two 

weeks so that we could record phone sessions. A unique ID phone session was generated 

each time, from when the phone was unlocked until locked again by the participant or the 

screen went to sleep mode. Data related to the taps on the active, foreground app includes the 

number of taps for each phone session, the start and the stop of the phone session, an app ID 

(i.e., the unique code identifying the active app and its category tapped on by the specific 

participant), the participant ID (i.e., random code attributed to each participant) and the 

device ID (i.e., random code of the device used by the participant). During our data collection 

campaign (February 2021 to April 2022), we recorded taps on participants' smartphones and 

GPS fixes as a series of timestamps occurring in an active phone session (i.e., when the 

tracking permission is on and permitted by the participant), accessing the smartphone's 

location sensors. GPS data was directly pushed to a table in our Postgres database on our 

server. Overall, we collected 52,688 phone sessions with an average duration of GPS 

recording (not active phone sessions but also when the phone is locked) of 54 minutes and a 

total of 2,978,096 timestamps with latitude and longitude coordinates with an average 

collection rate of 2.6 timestamps per minute. The tapping data collected by the MapOnTap 

app on participants' smartphones were pushed to the cloud platform operated by 

QuantActions every time a Wi-Fi connection was available. From the cloud platform, we 

downloaded the data and imported it to a Postgres database on a server in our secure 

University IT infrastructure. For tapping data, we have 119,713 phone sessions with an 

average duration of 5 minutes and 11 seconds and a total of 12,492,705 timestamps. 

We imported the phone sessions with the tapping data and the phone sessions with geographic 

coordinates and timestamps from the Postgres database to two different pandas' data frames 

on Jupyter Labs. The Jupyter Labs environment is running on a different virtual server in our 

secure University IT infrastructure. 

Our exploratory analysis investigates potential distance effects on smartphone usage 

behaviour. Thus, we first considered the geographic coordinates and the related timestamps 

only for each participant. Hence, we conceptualised and computed the home location for each 

participant as longitude and latitude mode of all GPS data from all participants’ phone 

sessions. It seems a plausible approach as we assume that participants would spend most of 

their time at home. Next, we computed all distances from home to all GPS fixes (in 

kilometres) and categorised these distances into three main groups, close to home (⁓ 50 km), 

mid-range distance (⁓ 150 km) and far-range distance (> 150 km). 

In the second part of the exploratory analysis, we included and combined information related 

to each participant's recorded taps and used apps. The apps are labelled according to Google 

Play Console1. Employing this categorisation, we found in total 32 distinct app categories 

1 https://support.google.com/googleplay/android-developer/answer/9859673?hl=en#zippy=%2Capps 
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used by participants (e.g., Communication, Social). After extracting tap and app data, we 

computed the number of all touches per session over the distance from home. 

In the third part of our exploratory analysis, we also considered the map app category. We 

grouped all the app categories recorded into two main categories: the 'map app' category (i.e., 

apps categorised in the Google Play Console as Travel and Local, Maps and Navigation) and 

the 'other app' category (i.e., all the other apps categorised in the Google Play Console, such 

as Communication, Game, Social, etc.). Here, our tap data frame was split into map app 

categories, with a total of 489231 taps and other app categories with a total of 12,003,474 

taps. We computed and plotted the KDE of touches on map apps and other apps over distance 

from home. Next, we calculated and plotted the time spent on map apps over the distance 

from home for each participant. Time spent on map apps was calculated for each participant's 

phone session taking the start and end of each phone session and then subdividing the phone 

session into subsections containing the start and the stop of map taps interactions. The 

resulting time was computed by aggregating the time difference between beginning and the 

end map tap. 

Finally, we computed for each participant the densities of map app taps and other app taps 

normalised by the total recording period time within the convex hull spawn by the GPS fixes. 

We assume that the GPS fixes registered by the participants' smartphones define the 

aggregate activity spaces. The densities of taps within these activity spaces should allow us 

to detect deviations from the expected linear growth of the number of taps with larger activity 

spaces. 

Results and Discussion 

From the initial pool of 42 participants, we excluded one participant with empty coordinate 

entries from the GPS data frame. Next, three additional participants were excluded because 

they had empty entries in the tapping data frame. Our final sample consisted of 38 

participants. 

The median of participants' median distance from home is 8.84 km, and the median number 

of taps is 24. We further computed the median ratio of taps over distance from home for each 

participant (MIN: .016; MAX: 31875; M: 1287; SD; 5281). The median of this median ratio 

is 2.63 taps per km. Successive, we split the 38 participants into two groups above and below 

the median taps over distance ratio. Since our data are not normally distributed, we applied a 

non-parametric Wilcoxon test to check for distance dependency of the tapping ratio. The test 

revealed that the central tendency for the two groups is significantly different (Z = 0, p < 

.001), which means that the tapping ratio depends on the distance from home. 

Thus, to better investigate smartphone app usage behaviour, we included in the following 

step the recorded tapping and app data of participants in conjunction with the GPS data. We 

plotted the number of taps per individual phone session over the computed distances from 

the estimated home. As such, we could better identify all our participants' different app usage 

patterns over spatial distance. Figures 1–3 depict the number of taps per phone session for 

three selected participants that show distinct patterns of tapping depending on the distance 

ranges from their respective home locations. These plots allow us to inspect distance effects 

and distinct app usage patterns visually. 
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Fig. 1:  Number of taps per phone session over distance (in kilometres) from estimated home location 

of P1. 

Fig. 2: Number of taps per phone session over distance (in kilometres) from estimated home location 

of P2. 

Fig. 3: Number of taps per phone session over distance (in kilometres) from estimated home location 

of P3. 
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Two clear patterns manifest most frequently across all participants. The first pattern we 

identified is when smartphone apps are mainly used at home, close (⁓ 50 km), and in a mid-

distance range from home (⁓150 km) (Fig. 1 and 2). This pattern is shaped as a bimodal 

distribution. The first bump shows that the highest number of phone sessions are recorded 

near or around the home location, and the second bump is around the mid-distance range. 

Interestingly, the number of taps does not increase with distance from home. Instead, the 

numbers of taps stay low (⁓100 taps), suggesting that participants do not use their phones 

continuously but prefer a short average session when accessing an app. This result aligns 

with findings on tappigraphy reported in (Reichenbacher et al., 2022). 

P1 and P2 were not the only two cases of bimodal distribution of taps, which leads us to think 

that individuals might have a peculiar behaviour when tapping and using their smartphones 

over space. Further analysis should consider the taps over distance from home for our sample 

to detect a significant behavioural pattern. 

The second pattern identified in the exploratory analysis shows a distribution of phone 

sessions all over the distance range (Fig. 3). This might reflect an extensive usage behaviour 

of the smartphone and its apps regardless of spatial factors, such as proximity to the home 

location. Moreover, Figure 3 shows an increase in app taps when they happen further away 

from home. This pattern reflects one of our crucial hypotheses: increasing taps far from home 

could be associated with increased taps on map apps. To investigate our assumption, we 

divided the app categories registered into two main categories map apps and other apps. For 

the analysis, we have also considered that the number of taps on map apps is much smaller 

than taps on other apps (see Do et al., 2011, Carrascal & Church, 2015; Fonseca et al., 2021; 

Reichenbacher et al., 2022). We plotted the KDE of taps on the two distinct app categories 

over the identified distances from home. Surprisingly, we have found that the increased 

number of taps with growing distance from home is related to map app usage for some 

participants (see Fig. 4–6). The additional planned analysis will unravel a finer-grained 

categorisation of the apps to get more insights into which apps are used where and when. 

Such knowledge about the usage of apps either near home or, on the opposite, far from home 

will allow us to identify typical app usage scenarios across space for individuals. 

Fig. 4: Kernel Density Estimation (KDE) of number of taps per phone session on map apps and other 

apps over distance from home for P1. 
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Fig. 5: Kernel Density Estimation (KDE) of number of taps per phone session on map apps and other 

apps over distance from home for P2. 

Fig. 6: Kernel Density Estimation (KDE) of number of taps per phone session on map apps and other 

apps over distance from home for P3. 

Lastly, we wanted to focus on the number of taps occurring across the spatial distance from 

home and the time spent on map apps and other apps dependent on distance from home. This 

will help us clarify if map apps are used for a longer time when far from home to navigate 

unfamiliar environments. Time spent on app categories over the distance from home was 

calculated for all participants for each phone session and then plotted over the distance from 

home. Figures 7–9 show the results for the three selected participants. The left panel shows 

the time spent on map apps, and the right panel displays the time used for other app 

categories. These patterns reveal different tendencies encountered across participants when 

exploring our data. However, the tapping patterns and time usage are not substantially 

different for the two main categories (map and other apps). 
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Fig. 7: Scatter plot of time spent (in seconds) over distance from home (in kilometres) on map apps 

(left panel) and other apps (right panel) for P1. 

Fig. 8: Scatter plot of time spent (in seconds) over distance from home (in kilometres) on map apps 

(left panel) and other apps (right panel) for P2. 

Fig. 9: Scatter plot of time spent (in seconds) over distance from home (in kilometres) on map apps 

(left panel) and other apps (right panel) for P3. 
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Figure 7 shows longer map usage time when in mid-range distance from home, suggesting 

various usage modes, such as planning, checking own position, or navigation and route 

following. Further analysis should consider different time granularities (e.g., daytime, 

weekdays, etc.) to reveal more distinct patterns and check whether they align with previous 

literature analysing app usage information from users of Android-powered mobile devices 

(e.g., Böhmer et al., 2011). In figure 8, we can see that P2 is spending time on maps only at 

a mid-range distance. This makes us confident of finding in future analysis stable patterns of 

mobile map app usage when further away from home in what is likely to be more unfamiliar 

environments. Figure 9 supports those analyses by showing a more extended time spent on 

map apps over a greater distance from home. Again, including different time granularities 

and a larger sample in our analysis could help us better to understand the purpose of mobile 

map app usage. 

To verify our hypothesis that densities of taps within activity spaces deviate from an expected 

linear growth of the number of taps with larger activity spaces, we first split the participants 

into two groups: above and below the median distance from home for both map taps and 

other app taps. Then, after verifying our sample's non-normal distribution, we performed the 

Wilcoxon test on the density of map taps: Z = 17.0; p < .001. Similarly, we computed 

Wilcoxon test on density of other app taps: Z = 15.0; p < .001. Both results showed a 

significant difference between the densities of taps of the two groups, implying a high 

dependency on distance from home. Thus, because both main categories of apps (i.e., map 

and other) showed similar significant results when performing the Wilcoxon test, we can 

conclude that there is no significant difference across these two categories and hence for the 

density of taps over the home distance. These results are consistent with the patterns visible 

in Fig. 7–9. 

Conclusions 

With our exploratory analysis of smartphone app usage, taking taps on the smartphone touch 

screen as a proxy for app usage, we could show some frequently occurring behaviour patterns 

across participants. The tappigraphy method revealed distinct mobile usage patterns in phone 

sessions when app taps were plotted over distance from the estimated home locations. 

Furthermore, when taps on apps were divided into two main categories (map apps and all 

other apps), we could better identify the spatial dependency of map app usage behaviour. 

These results align with our hypothesis that map apps are used more with increased distance 

from home. However, when comparing the densities of taps for the map and other apps, we 

could not see any significant change in the tapping patterns. This suggests that while moving 

further from the home location, apps are used independently from the categories in which 

they belong. However, finer-grained categorisation of apps could reveal usage patterns that 

we failed to identify here. This work only presented results from an exploratory analysis 

using tappigraphy methodology. For a future study, we will expand our analysis in different 

directions. To reveal more distinct spatiotemporal map usage patterns, we will include a 

finer-grained categorisation of the apps and different time granularities. In conclusion, 

coherently with our current findings and the initial state of this exploratory analysis, we argue 

that tappigraphy could be considered a reliable EMA method for understanding mobile 

geographic information usage behaviour and eventually support the user-centred design and 

development of future human and context-dependent map apps. 
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Summary: Replication of real-world wayfinding studies is not a trivial task. Even less if it is to be 

replicated in a different geographic environment. The selection of one or several routes is one of many 

decisions to be made. Only recently (2021), a reproducible, systematic and score-based approach for 

route selection for wayfinding experiments was published. Besides allowing for selecting a route within 

a selected experimental area, it claims to be able to find similar routes in different geographic areas. 

However, it remains unclear if similar, according to this route selection framework, routes lead to 

similar study results. In order to answer this question, an agent-based simulation comparing Turn-by-

Turn and Free Choice Navigation approaches (between-subject design) is run in one European (Vi-

enna) and one African (Djibouti City) city. First, a route in Vienna is selected and, second, the 5 most 

and the 5 least similar routes in Djibouti City are found. These routes are used in the simulation in 

order to scrutinize if more similar routes lead to more similar results regarding the arrival rate as a 

metric. The results suggest that the route selection framework is suitable for replication studies for the 

Turn-By-Turn navigation approach but needs further improvement for the Free Choice Navigation ap-

proach by adding features describing the neighborhood of the route. 

1. Introduction

The replication of studies is not a trivial task, as many factors need to be considered and kept 

as similar as possible to make the results comparable. The route selection is crucial for rep-

licating wayfinding studies. There are two possibilities regarding the experimental area. It 

can be kept constant, although some elements of the environment may have changed over 

time and potentially impact study results. The second option is to replicate a wayfinding study 

in another geographic area. In the second case, the route selection task is not as simple as in 

the first case (using the same route). The routes from both studies, the original and the repli-

cating one should be similar regarding the wayfinding task. 

We recently presented (2021) a framework [14] that allows systematic route selection, i.e., 

how to select a route from a given experimental area with many potential routes. Furthermore, 

we hypothesized that this framework would increase the replicability of wayfinding studies 

by finding similar routes in different geographic areas. If this assumption can be verified, 

then the above-mentioned problem of selecting similar routes in different geographical areas 

can be solved or at least mitigated. Therefore, we will use the previously proposed route 

selection framework, first, to identify an average-based [14] route in a European city (Vi-

enna) and, second, to find the most and the least similar routes in Djibouti City in Africa. 

Two navigation systems (see Section 3.2) will be compared on these routes with respect to 

the arrival rate. Since the framework can capture route characteristics, more similar routes in 

Djibouti City should lead to more similar results to those achieved in Vienna. As in our pre-

vious study [13], this hypothesis will be scrutinized through a simulation study. 

The contribution of this work is two-fold: First, the suitability of the route selection frame-

work for replication studies is investigated. Our results suggest the ability of the route selec-

tion framework to support replication studies in other geographic regions. Furthermore, it 

should increase the comparability of wayfinding studies if the selected experimental areas 

with their respective routes are similar enough. Second, we shed light on the importance of 

route selection in wayfinding studies by analyzing the arrival rates on single routes. 
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2. Related Work

In this section, we discuss relevant literature, first, about reproducibility in the domain of 

GIScience in general and, second, about replication in the wayfinding domain. In this work, 

the terms reproducibility and replication are used in the sense of Claerbout/Donoho/Peng [2]. 

Reproduction means recreating the results with the same methods and input data that the 

authors provide. The related concept of replication means coming to the same conclusion by 

conducting a new study. 

2.1 Reproducibility in GIScience 

Reproducibility has seen considerable interest in the GIScience domain within the last years 

(e.g., [9, 3]). Ostermann and colleagues assessed 87 papers from GIScience conferences be-

tween 2012 and 2018 regarding reproducibility [17]. None of the assessed works was easily 

reproducible. This study replicated a study considering the AGILE conference [16]. In con-

clusion, both conference series are similar regarding reproducibility. Konkol and colleagues 

conducted a study about computational reproducibility in geographic research [10]. They 

studied the understanding of open reproducible research (ORR) through surveys, interviews 

and a focus group. They found that the meaning of ORR diverges considerably among the 

participants of the European Geosciences Union General Assembly 2016. Furthermore, the 

authors tried to reproduce the results and figures of 41 open access articles from Copernicus 

and the Journal of Statistical Software. They encountered technical issues of different sever-

ity levels in 39 works. 

2.2 Replication in Different Geographic Areas in the Wayfinding Domain 

Several studies have been conducted replicating real-world studies in virtual environments. 

Kuliga and colleagues [11] conducted a wayfinding study in a building and then replicated it 

three times in different virtual replicas. All four conditions yielded similar results regarding 

superfluous distances and absolute angular pointing errors. Savino and colleagues compared 

wayfinding in real-world and virtual environments [20]. They found differences between 

both navigation aids (paper map and smartphone) in both conditions regarding stopping time 

and task load, among others. No new route was selected in both studies, as the virtual envi-

ronment reflected the real world. 

Wayfinding studies replicated or conducted in a different geographic area are usually based 

on questionnaires rather than actual wayfinding studies (see e.g., [12, 15]). To the best of our 

knowledge, there is no work replicating an actual pedestrian wayfinding task in a different 

geographic area. One reason for this might be the difficulty of selecting appropriate routes. 

Our work contributes to the realization of replication studies in the wayfinding domain, which 

are conducted in different geographic areas by facilitating the route choice. 

In many wayfinding experiments (e.g., [6, 5]) in which at least two navigation systems are 

compared, one of the conditions is a map-based Turn-By-Turn navigation approach (e.g., 

Google Maps). The replication of this widespread baseline condition is rather simple (App 

availability) but still time-consuming. Given that many empirical results are available for this 

and other approaches, there might be a possibility to avoid the replication of baseline ap-

proaches in every experiment. This would allow comparing novel systems against existing 

ones by reproducing the experimental setup but having to collect the results for the novel 

approach only. 

3. Experimental Setup

In this section, the agent-based simulation study with its two navigation systems, Turn-by-

Turn (TBT) and Free Choice Navigation (FCN), is described in detail. We will elaborate on 

both experimental areas and all potential routes with pre-defined features. As in our previous 

work [13], the study follows a between-subject design with 6000 agents. The choice between 

a between-subject or within-subject design is of less importance, as long as both groups do 

not differ significantly regarding their environmental spatial abilities (see Section 4), which 

mainly influence the performance (see Section 3.2). 
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3.1 Experimental Areas 

As the original experimental area (source city), the city center (surface area 2.5 km2) of Vi-

enna is chosen (see Figure 1). According to the classification by Thompson et al. [22], the 

network layout is of type high transit. The city for which suitable routes for a replication 

study need to be found is Djibouti City in Africa (see Figure 2), which is of network type 

irregular [22]. The selected experiment area is of similar size (surface area 2.27 km2) and lies 

in the western Part of Djibouti City (see Figure 2). The size of the experimental areas is of 

less importance, as long as there are routes of the desired length (see Section 3.3). Bigger 

experimental areas mean more potential routes and result in longer computation times. 

Figure 1: The experimental area in Vienna with six sample routes. Basemap © OpenStreetMap. 

Figure 2: The experimental area in Djibouti City with six sample routes. Basemap © OpenStreet-

Map. 

For both experimental areas, the raw network data were downloaded from OpenStreetMap 

(OSM)1. The intersections and their characteristics were calculated using the Intersections 

Framework [4], whereas street segments between two intersections were extracted with a 

custom script. For both areas, a networkx graph was created, which was used for the simula-

tion. 

3.2 Navigation Systems 

Following our previous work [13], we compare the same two navigation approaches, namely 

1 https://www.openstreetmap.org, last access March 25th, 2022 
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Free Choice Navigation (FCN) and Turn-by-Turn (TBT). The primary reason to use a navi-

gation assistance system is the desire to reach a defined destination. Therefore, the arrival 

rate is chosen as the success metric. An agent successfully reaches its destination if the 

walked distance does not exceed 150% of the shortest path length [13]. 

3.2.1 Turn-by-Turn (TBT) 

In this condition, the agent will be guided along the shortest path between origin and desti-

nation and receives only at turning points navigation instructions. It is a popular approach 

that is often used as baseline in navigation experiments (e.g., [8, 21]). Whenever agents have 

to go straight ahead (continuation within a 20° cone concerning the current walking direction) 

at a junction, then no instruction is issued, and the agent will not turn. Every agent has a fixed 

probability to interpret generic navigation instructions correctly, which ranges between 0.8 

and 1. We expect such a high probability [13] because navigation instructions are followed 

every day by millions of users. The agent interprets a turning instruction using a weighted 

random choice: The branch indicated in the instruction obtains a weight equal to the agent’s 

probability to interpret generic navigation instructions correctly. The remaining probability 

is distributed equally over all remaining branches, excluding the one indicated in the instruc-

tion and the most recently taken branch. Once the agent reaches the destination, the trial ends. 

3.2.2 Free Choice Navigation (FCN) 

Free Choice Navigation is a navigation paradigm aiming for more freedom of choice during 

navigation, trying to balance the number of free choices, given instructions and a maximum 

allowed route length [13]. The following example shows the working mechanism: Anna, a 

good wayfinder, navigates to an art gallery. Before the navigation starts, Anna receives in-

formation about the beeline direction and distance to the art gallery. The system does not 

issue any instructions at the first two junctions because the beeline direction should still be 

clear to the user after such a short period. In this situation, Anna decides on her own which 

branch to take. The third junction, however, is rather complex and has six branches. Anna is 

quite sure about the beeline direction towards the art gallery, but two branches seem to be 

good choices to her. Based on internal computations which take her spatial abilities and the 

environmental structure into account, the navigation system becomes aware of this difficulty 

(see our previous work [13]). Consequently, Anna receives an instruction because one of the 

branches results in a considerable deviation from the acceptable route length. The instruction 

is interpreted correctly and Anna continues her way to the art gallery. 

This example illustrates which components influence the internal computations of the navi-

gation system: the user’s environmental spatial abilities, the features of the current junction 

and the already traversed route. If an instruction is issued, a similar procedure as above ap-

plies, with the difference that the last taken branch is not excluded but has a lower probability 

of being taken. Another difference is that the agent’s probability to interpret the generic nav-

igation instruction correctly (as well between 0.8 and 1) depends linearly on its environmen-

tal spatial abilities. For more details, please refer to the original paper [13]. 

3.3 Route Selection 

In this section, an average-based route in the source city and the most/least similar routes in 

the target city are selected. Our previously proposed route selection framework was used for 

these tasks [14]. 

As pre-emptive criteria [14], we set the route length between 550 m and 1000 m (see e.g., 

[18, 19]) and the number of decision points on a route to 12 (according to OSM) to avoid 

trivial route length. Only shortest paths were considered suitable for our experimental design. 

Given that the two navigation approaches depend on the geometry of the route and the net-

work (see Section 3.2), geometry-based routes features were selected [14]: average number 

of branches, number of n-way intersections (e.g., 3-way intersections), regularity of decision 

points [4], number of right, left and non-turns and length-related features (average, median 

and standard deviation of segment lengths and total route length). All features were equally 

weighted. To find all possible routes meeting the set criteria, we followed the original paper 
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[14] and used SageMath 9.1 with its SubgraphSearch function2. In Vienna, 11737 shortest

paths meeting the above-mentioned criteria were found and 9064 in the experimental area in

Djibouti City.

3.3.1 Vienna 

For every route in Vienna, the weighted Euclidean distance (called score) to the hypothetical 

route, which shows closest to average values for all criteria, was calculated [14]. Four routes 

yielded a minimal score of 0.12 (0 would indicate a perfect match). Actually, there are only 

two distinct routes, since every route is present twice. Two distinct routes traversed from start 

to destination and vice versa result in four routes. All four routes are very similar, and they 

differ regarding the direction and a turn while entering a square (see Figure 3). Due to these 

similarities, no route could be defined as better than the others, and consequently, all four 

routes are considered suitable. 

For each of these routes, the five most and five least similar routes in Djibouti City were 

found using the framework. Five routes were chosen due to two reasons. First, arrival rates 

for five routes are more representative than considering one route only. Second, five seems 

a reasonable number in the route selection process because higher-ranked routes may not 

always be suitable for the experiment due to uncaptured characteristics in the route features 

(e.g., data not available). In this case, lower-ranked routes need to be considered too. The 

route selection framework is an assistance system, and local knowledge will always help to 

make the final decision, potentially excluding higher-ranked routes. This expert knowledge 

does not impede reproducibility, if the decision is well documented. 

Figure 3: Routes in Vienna. The four routes differ in direction and a turn while entering a square. 

Basemap © OpenStreetMap. 

3.3.2 Djibouti City 

While searching for the most and least similar routes in Djibouti City, two further features 

were added to increase the similarity to the source routes. Both features concentrate on the 

order of one of the above-mentioned features (see Section 3.3). The sequence of right, left 

and non-turns (e.g., ’rnrlrnl’) and the sequence of the cardinality of decision points (e.g., 

’3334343’) along the route were considered, as they potentially influence the simulation re-

sults (e.g., more branches lead to more difficult decisions). 

In Vienna, the Euclidean distance was calculated between every route and a hypothetical 

average route (hence the term average-based). In Djibouti City, the latter is substituted by the 

routes found in Vienna, respectively (see Section 3.3.1). As the two newly added features are 

strings, the Levenshtein distance was used to calculate the difference. 

2 https://doc.sagemath.org/html/en/reference/graphs/sage/graphs/generic_graph_pyx.html, 

last access March 4th, 2022 
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For each of the four considered routes coming from the source city, the five most and least 

similar routes in the experimental area in Djibouti City were calculated. The Euclidean dis-

tances for the most (M=0.903, SD=0.096, MIN=0.683, MAX=1.022) and least (M=3.334, 

SD=0.417, MIN=2.49, MAX=3.641) similar routes differ considerably. 

4. Simulation Results 

For each route, the whole simulation was run 100 times in order to counterbalance the influ-

ence of the weighted random choice function (see Section 3.2). Each route was walked by 

two (TBT and FCN) groups of 3000 agents. The presented numbers are the means of the 

corresponding route(s) for all 100 runs (different seeds). To ensure that the common ability 

of agents to interpret navigation instructions correctly did not influence the results, a Wil-

coxon Signed-Rank Test on these abilities of the agents was performed. No significant (α = 

.05) differences between both conditions were found n = 3000 (Z = .00, p = .99, r = .00). The 

general influence of the these abilities on the Free Choice Navigation approach was discussed 

in our previous paper [13]. For each city, the parametrization (FCN) with the best balance 

between arrival rate and freedom of choice was used [13]. 

Vienna Djibouti City 

Most Similar Routes Least Similar Routes 

Route TBT FCN Mean TBT Mean FCN Mean TBT Mean FCN 

0 0.962 0.954 0.923 0.857 0.854 0.916 

1 0.966 0.96 0.953 0.905 0.846 0.909 

2 0.967 0.932 0.962 0.906 0.856 0.914 

3 0.951 0.953 0.956 0.909 0.854 0.916 
Table 1: Arrival rates for four equivalent (Euclidean distance score) routes in Vienna and their five 

most/least similar counterparts in Djibouti City. TBT - Turn-By-Turn, FCN - Free Choice Navigation, 

Mean - mean for 5 routes. The figures are rounded to three decimals. 

4.1 Vienna 

In the European city, both navigation systems reached a high arrival rate of around 0.95 (see 

Table 1). On three routes (0-2), TBT led more agents to the respective destination than FCN. 

On one route (3), FCN performed better than TBT. In general, the achieved arrival rates in 

Vienna are very similar for both navigation systems. 

4.2 Djibouti City - Turn-By-Turn 

For agents using the TBT navigation system, the most similar routes in Djibouti showed an 

arrival rate of around .95, which is close to the arrival rate in Vienna (see Table 1). The first 

route (0), however, is an exception, having a lower arrival rate of .923. The least similar 

routes in Djibouti showed an arrival rate of around .85, representing a considerable difference 

to both the most similar routes and the routes from the source city. For every route from the 

source city, the most similar routes in the target city yielded more similar results than the 

least similar routes. 

4.3 Djibouti City - Free Choice Navigation 

For agents using the FCN navigation system, the most similar routes in Djibouti showed an 

arrival rate of around .9, which is different from the arrival rate in Vienna (around 0.95, see 

Table 1). The first route (0), again, is an exception having a lower arrival rate of .857. The 

least similar routes showed an arrival rate of around 0.91, similar to the most similar routes. 

Moreover, the least similar routes in Djibouti yielded higher arrival rates than the most sim-

ilar routes. 
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4.4 Djibouti City - TBT versus FCN 

Comparing both navigation systems on the five most similar routes in Djibouti City shows 

that more agents reached their destination with TBT than with FCN. The opposite is observed 

while considering the least similar routes. In this case, FCN is superior to TBT regarding the 

arrival rate (see Table 1). 

5. Discussion and Limitations

This section will discuss the results by comparing the arrival rates between and within cities, 

navigation approaches and the most and least similar routes. Furthermore, we discuss the 

limitations of our work. 

The four selected routes in Vienna yielded similar arrival rates for both navigation systems 

(see Table 1). Only one route (2) led to a bigger difference of around 3%. This is not in line 

with the original work [13] in which TBT had, on average, a 5% higher arrival rate (100% 

vs. 95%). This indicates that route selection is crucial in experimental design because it can 

change the drawn conclusions and the outcome of a wayfinding study. For the TBT condition 

in Djibouti City, the route selection framework helped to find routes that yield, on average, 

a similar arrival rate as the corresponding source route. The least similar routes yielded con-

siderably worse results (around 85%) compared to both the source routes in Vienna and the 

most similar routes in Djibouti City. This indicates the suitability of the route selection frame-

work with the selected route features, as the lower-ranked routes yielded less similar results 

than higher-ranked routes. As Vienna and Djibouti City represent quite different layout types 

[22], we expect the framework to work as well in other geographic areas. 

The FCN condition in Djibouti City shows a different picture, in which both the most similar 

and the least similar routes yielded high arrival rates but not as high as the source routes (see 

Table 1). Moreover, the least similar routes yielded better results in terms of arrival rate than 

the most similar routes. This can be explained by the interplay between the chosen route 

features and the navigation approach. One of the ideas of Free Choice Navigation is to give 

more freedom to the wayfinder. This increases the chances of not taking the shortest path, 

which is supposed to be taken in the TBT approach. The simulation data support this hypoth-

esis (see Table 2). 

Vienna 
Djibouti City 

Most Similar Routes Least Similar Routes 

Route TBT FCN Mean TBT Mean FCN Mean TBT Mean FCN 

0 107 597 79 344 52 282 

1 105 601 85 658 58 242 

2 121 380 89 375 57 190 

3 139 398 67 329 52 282 
Table 2: Number of uniquely walked routes taken by successful agents for four equivalent (regarding 

the Euclidean distance score) routes in Vienna and their five most/least similar counterparts in Djibouti 

City. TBT - Turn-By-Turn, FCN - Free Choice Navigation, Mean - mean for 5 routes. The figures are 

rounded to integers. 

In the FCN condition, more unique routes are taken by successful agents in both Vienna and 

Djibouti City. With an increasing number of unique routes, the neighborhood around the 

route plays a more vital role. A route might be easy to navigate, but once a navigation error 

occurs, the wayfinder might find itself in a difficult to navigate area due to complex junctions, 

dead-ends or detours [1]. The selected properties (see Section 3.3), however, regard route 

properties only, without considering the neighborhood of the route itself. The route selection 

framework could be improved by including additional features, which capture the previously 

used characteristics but adapted for the neighborhood. Completely new features like central-

ity measures (graph theory) calculated for the route neighborhood could also help to improve 

the process of finding similar routes. This could be as well a first step to tackle the problem 
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of conducting the baseline condition over and over again in wayfinding experiments (see 

Section 2.2). Previously collected empirical data could be used as a proxy if the neighbor-

hoods and routes are highly similar. 

However, the definition of such a neighborhood is not a trivial task and depends on the nav-

igation system. Some routes are more likely to be taken with a given navigation system. We 

suggest incorporating features describing this neighborhood while considering the navigation 

system to define its spatial extent. One possibility to define the spatial extent of the route’s 

neighborhood is the Potential Route Area (PRA) [8]. However, the PRA is based on shortest 

paths only, which are not necessarily taken. 

The selected metric is important too. Regarding the number of unique routes (see Table 2), 

the results are as expected, more similar routes yielded more similar results than less similar 

routes. Regarding the arrival rate, the results are partially in line with our expectations (see 

Table 1). Therefore, the selected route features should consider the navigation system and 

the success metric. 

The achieved arrival rates in Djibouti City are not entirely in line with the previously con-

ducted simulation study [13]. Our study used 40 (Djibouti City) routes instead of the whole 

route population as in the original paper. A wayfinding study is usually conducted with a 

small-sized subsample of routes. The differences within the cities (see Table 1) and between 

our study and the original work [13] suggest that the selected route can impact study results 

(see Section 6). 

5.1 Limitations 

We could have added more complexity to the simulation with respect to the original study, 

but we wanted to keep our results comparable. In order to find similar routes, other similarity 

metrics could have been used. Toohey and Duckham [23] compare four different trajectory 

similarity measures, but all of them rely purely on route geometry. Han and colleagues used 

deep learning to calculate route similarity [7]. The authors, however, define the similarity 

based on node-wise distance over the underlying spatial network, although their architecture 

incorporates information about direct neighbors for a node, whose importance can be set by 

a parameter. In contrast to the selected route selection framework [14], however, the resulting 

similarity is not readily explainable. 

6. Conclusion and Future Work

In our work, we wanted to verify if the proposed route selection framework can find similar 

routes in different geographic areas and, thus, make it suitable for replication studies. Our 

results reveal the suitability for the widespread Turn-By-Turn navigation approach and sug-

gest the incorporation of further neighborhood features into the framework in order to work 

with navigation approaches that cover more potential routes between start and destination 

like Free Choice Navigation. This work is a first step towards the replication of wayfinding 

studies in different geographic areas. 

For future work, there are several strands to follow. Further success metrics needs to be tested 

with our approach to see whether the results are applicable beyond the arrival rate and the 

number of uniquely walked routes. The definition of the neighborhood for a route is an open 

problem. We believe that it should depend on the tested navigation system. Furthermore, 

features describing this neighborhood are to be defined and verified. Our results suggested 

the importance of route selection on study results. We will scrutinize this hypothesis with a 

further simulation study in which we will run a wayfinding experiment on all suitable poten-

tial routes within the experimental area and compare the results. A further research direction 

is the prediction of the arrival rate or any relevant success metric based on the route and 

neighborhood features without running the simulation. One possibility would be the usage of 

deep learning. 
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Summary: This paper focuses on the analysis of bike-sharing data in Munich from 2016 - 2019 and 

discusses its spatial distribution in its central area for further implementation of dockless bikeshar-

ing. New developments in transport alternatives can change user behavior and increase the competi-

tion between different types of mobility. Since 2017 bike-sharing started to decrease with the launch 

of electric scooters which don't rely on docks at all. On the one hand it means for Munich's central 

area that public space will now contain more dangerous obstacles if both - electric scooters and bikes 

- are highly distributed spatially. On the other hand bike-sharing seems to be in need of an increase

in its user flexibility by offering a greater variety of storing the bike which can be achieved by Loca-

tion Based Services which are already used by electric scooters. Following these thoughts, an imple-

mentation of geofences is discussed in order to reduce the spatial distribution over Munich's public

space and thus reducing the bikes potential of becoming a dangerous obstacle for other road users.

Introduction 

The bike has always been an important way of getting from one point to another in our 

modern society and it is hard to imagine a world without it. The reason for traveling doesn’t 

matter – it is used in time of leisure, to get to work or for a short ride to the next shopping 

district. Thus, the bike is often times used at first choice because it offers independence and 

can be held at low cost which lie mostly in repairing and changing wheels. As a positive 

side effect bike users benefit from a lot of healthy aspects – for example getting fresh air 

and movement that is gentle on the joints which is great for the elderly users. In addition to 

that, bike users don’t rely on parking slots to be able to get anywhere in the city. 

So the question arises if existing bike-sharing with docking-stations can still be improved to 

offer more flexibility. The most direct case would be to not be reliant on a dock at all to 

store the bike in. This is also the research thematic of this paper which is centered around 

the spatial independence of bike-sharing with dockless models. Space and time depend on 

eachother and so moving through space takes time – especially in modern cities that are full 

of obstacles that can be avoided. 

The aim of this paper is to provide useful information about Munich’s bike-sharing data 

that can be used to implement dockless bike-sharing in its central area. 

The key questions being answered are... 

[1] What is geofencing and how can it be implemented in useful ways?

[2] What does Munich’s bike-sharing data tell about its spatial distribution?

[3] How can Munich’s central area benefit from a dockless bike-sharing system?
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Methods 

In this paper the Origin-Destination (OD) data of bike-sharing in Munich from the years 

2016 to 2019 is analyzed using ArcGis. The OD contains information about the Starting 

and Ending position of the ride as well as the rental station. The data that was available 

through a CSV was imported into ArcGis. The OD will be analyzed using a Point 

Clustering Method that was mentioned earlier and an implementation of geofences for a 

dockless bike-sharing in Munich’s central area will be discussed based on these results. 

Results 

The results of this Paper contain visualisations of the OD Data by using tools of ArcGis. In 

Figure 1 Thiessen-Polygons for each Station in Munich's central area were created which 

have a bar chart for the total number of points of bike-sharing usage in each year (2016 - 

2019). It is clearly visible that the need for bike-sharing suffered a great decrease in the 

year 2017 which only slowly started to recover afterwards. This decrease might have a 

direct link to the launch of electric scooters in Munich in the year 2017. 

Fig. 1 Occupancy rate of stations between 2016 and 2019 

Conclusion 

The bike-sharing data of Munich's central area has shown that bike usage is highly 

distributed over space. This might make it difficult for bike-sharing to reach its full 

potential of flexibility as stated by Chen et al. (2019: 334). There has been no further 

development of actual geofences for Munich's central area because it is lacking space for 

parking bikes in general. Most space is been taken by buildings, streets or public places. 

The later might seem to offer lots of space but is actually used by people to relax and meet 

each other which means bikes might become an obstacle in that area. So the increase for 

bike-sharing that is visible in figure 1 might make geofences through Location Based 

Services interesting for further developement. 
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Summary: Providing routes to leisure walkers requires alternative recommendation scenarios to those 

used in tourism routing systems. In this paper, we present an emerging conceptual model of three sce-

narios for curating leisure walking route recommendations. Our recommendation scenarios consider 

the highest ranked similar walks, routes for new application users, and a progressively changing route 

recommendation scenario. Conceptual models for these scenarios are presented and the challenges in 

completing this research are considered. Feedback received on these early conceptual models will be 

used to further design a recommendation framework for curating engaging leisure walking experiences. 

Introduction 

Leisure walking is an outdoor activity that can be undertaken for the purposes of getting 

outside, wellbeing, and exploring new places (Williams et al., 2021). Providing rich, 

contextual, and interesting walks for individuals is therefore a unique challenge that has been 

considered in previous literature. Watts & Bauer (2022) investigate the design and 

implementation of peaceful walks using a rating prediction tool that considers noise and 

natural features. Quercia et al. (2014) reports on walking route recommendations in the city, 

providing participants with routing algorithms that attempt to provide short, beautiful, quiet, 

and happy walks from crowdsourced perception data. Providing personalised 

recommendations at scale presents a problem in curating new routes, especially when 

considering research beyond that of moving between the most popular points of interest 

(POIs) (e.g., Gavalas et al., 2017), or outside of urban areas. We use the term curated to refer 

to the selection and organisation of POIs to create route experiences which meet the needs of 

leisure walkers. 

The conceptual model presented in this paper is an emerging set of recommendation 

scenarios that will be further developed in the rest of our research project. The remainder of 

this paper presents the current recommendation scenarios, the challenges in relation to 

providing recommendations, and the expected outcomes and future work for the research. 

Recommendation Scenarios 

Based on the identified gap in applications and literature, we designed three initial conceptual 

models for a leisure walking route recommendation system. The system proposed is designed 

to take a hybrid approach to providing recommendations, making use of both content-based 

and collaborative filtering methods (Aggarwal, 2016). The emerging system design was 
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proposed in a way that multiple scenarios could make use of the same implicit and explicit 

input interaction (Ballatore & Bertolotto, 2015) to personalise application content. Figure 1 

presents a high-level design diagram of this proposed model. 

Fig. 1: A high-level overview of the conceptual model for the proposed recommendation system. 

We propose that each recommendation scenario can also apply to two types of routing, 

defined as: 

• Dynamically Generated Routes: Custom routes that are generated using existing 

attributes from datasets such as POIs or mobility traces, routing is then performed 

between each instance. 

• Pre-defined Routes: Routes that have been curated or uploaded by users, this may 

be user generated content making use of ambient or volunteered geographic 

information. 

Top Ranked Similar Routes 

The first proposed scenario introduces the top-ranked similar walks to the application user. 

This proposed scenario uses ranked inputs from the user and stores these rankings in the 

system, when a new request is received the database is queried for similar route attributes 

(e.g., POIs, features). We propose that these routes are then ranked by the most popular in 

the selected geographic area and presented to the user. 

Routes for New Users 

The second scenario considers the display of routes to new application users, who may not 

have large amounts of information already in the system (e.g., the cold start problem). This 

scenario ranks known context (e.g., geolocation) and known responses to onboarding 

questions (e.g., where do you like walking?). The system will then query based upon this 

data and generate a distinct set of routes. 

Progressive Route Strategies 

The final proposed scenario presents a progressively changing selection of routes, enabling 

user selected strategy requirements to be supported through route recommendations. For 

example, a user may look to increase route complexity over a specified time period, meaning 

a plan is stored within the application and used to process and then present these 

recommendations. 

Research Challenges 

Some challenges exist in providing contextual and interesting route recommendations for 

leisure walkers, including: 

Lack of Data. A lack of public data that exists in regards to natural or more subjective places 

along a walk make it difficult to curate leisure walking recommendations. Tourism-based 

research can use Foursquare POIs (e.g., Yang et al., 2015) to apply attributes to routes, 
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however, this approach is not possible in more rural areas due to an absence of identified 

physical locations. 

Subjective Data. Data relating to leisure walking shares similar problems to that of other 

types of user generated content. It can be considered that user data required to apply context 

to routes needs to be captured through implicit or explicit interactions, requiring 

considerations from designers as to the privacy, reliability, and scalability of this data. 

Expected Outcomes and Future Work 

The emerging conceptual models presented are expected to be used within a framework for 

the curation of leisure walking route recommendations. We hope to understand how users 

engage with leisure walking routes through conducting a user study. With plans to investigate 

the use of platial information, a type of information relating to place as opposed to spatial 

representations (Westerholt et al., 2018). Our aim of this will be to investigate how platial 

information can be identified from meaningful interactions and used in the curation of new 

routes. 
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Introduction 

Getting lost in a building is a common experience, especially for first-time visitors. This 

also applies to university campuses. While finding the current position outdoors with 

smartphone and GNSS sensors is straightforward, indoor positioning is a bigger challenge 

(Kunhoth et al., 2020, Koyuncu & Yang, 2010, Farid et al., 2013). Since most routing tasks 

start at the current position and most targets on a campus are indoors (lecture rooms, 

offices, toilets or refectories), we were interested in investigating the possibilities to 

implement an Indoor Positioning System (IPS) at our university campus. The goal was to 

show the “blue dot” with the current indoor position on mobile devices as accurately as 

possible. 

Evaluating indoor positioning technologies 

In this study, we first examined different technologies for the implementation of Indoor 

Positioning Systems (IPS). These technologies included ultra-wide band (UWB), radio-

frequency identification (RFID), wireless fidelity (WiFi), ultrasound, and Bluetooth Low 

Energy (BLE). 

For our project, we decided in favor of BLE, because it offered the best ratio between 

accuracy and costs. A similar setup was implemented and tested in other studies (e.g., 

Satan, 2018, Lee et al., 2018) As a software component, we chose ArcGIS Indoors, since 

the university’s Campus Information System had already been built based on ArcGIS 

Online and ArcGIS Enterprise, and we could use ArcGIS Indoors without any additional 

cost. 

Implementation of an IPS 

In a first step, Bluetooth Low Energy beacons and the ArcGIS Indoors technologies were 

tested in a residential building as a prototype, since on-campus experiments could not be 

conducted due to the ongoing Covid-19 pandemic. 

The next step consisted in the planning of the beacon distribution in Desktop GIS (ArcGIS 

Pro, see Figure 1). After completion of the planning stage, the ArcGIS Indoors model was 

prepared. We then placed 85 beacons in the buildings, mostly in corridors and stairways, 

and thus covered 4000 m² in different parts of the campus. When placement and labeling 

were completed, we recorded beacon signals with a third-party app (indoo.rs) using SLAM 

(Simultaneous Localization and Mapping) technology. 
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Fig. 1: Beacon placement in ArcGIS Pro 

In initial on-campus experiments, we achieved a positional accuracy between one and six 

meters. After consolidation, change of the beacons’ position and power strength, we could 

improve the accuracy to values between one and three meters (see Figure 2). 

Fig. 2: Average positioning errors in one building 

Due to the different structure of the five buildings on the campus, some conclusions for the 

improvement of the beacon placements were drawn. For instance, we achieved lower levels 

of accuracy in lower levels of the buildings, due to thicker walls, low ceilings and many 

curves and edges. On these levels, we had to place more beacons at a lower height, because 

obstacles tended to be close to the ceiling. In long aisles with more beacons in other areas, 

accuracy was higher, due to higher ceilings and a fewer amount of obstacles for signals. In 

general, long aisles inside a building required a larger number of beacons per m² than 

quadratic lecture rooms. 

In some cases, it also made sense to reduce the signal power, because with a higher power, 

the “blue dot” with the current position on the map (see Figure 3) sometimes “jumps 

around”. 
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Fig. 3: „Blue dot“ on a mobile device after successful IPS implementation 

After achieving satisfying levels of accuracy in all public parts of the buildings where the 

beacons had been placed, user experiments were conducted with different Android and iOS 

devices. For this part of the experiment, 30 measurement points were marked on the 

ground, and participants recorded the “blue dot”. Based on these recordings, we could 

analyze the deviations between the blue dot and the measurement points more precisely and 

further calibrate the beacon distribution. 

Conclusion and future work 

We successfully implemented an IPS at our university campus, and the results can be 

displayed with mobile devices. We achieved positioning accuracies of one to three meters 

inside buildings, by changing the initial configuration (such as signal power and the 

density) and measuring accuracy results. 

Future work should investigate the factors that influence the positional accuracy in 

buildings. Furthermore, IPS can be expanded to the entire campus and should be enhanced 

with a routing and tracking function. In the meantime, new products (such as ArcGIS IPS) 

have arrived on the market, which further facilitate combining indoor positioning systems 

with GIS technology. These products also allow users with less GIS knowledge to 

implement IPS in bigger buildings more efficiently. 

The topic of indoor positioning has an enormous potential for GIScience, since indoor 

positioning is an important issue for many types of facilities, such as airports, hospitals, 

railway stations, large industry complexes, museums or libraries. 
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Summary: During the COVID-19 pandemic, great efforts have been made on measuring human 
mobility patterns and interpersonal close contacts using mobile phone location big data. However, 
few studies analyzed the uncertainty in those measures. This research aims to address two main 
uncertainty issues in measuring close contacts using mobile device data: noise and choice of report 
location. Using large-scale mobile device panel data at the state level in the US, our experiment 
results show that the noise (false positives) detected in close contacts generate larger errors than the 
choice of report location (home vs. event location). In addition, the population density (rather than 
total population) is positively correlated with the close contact measurement errors. 

Introduction 
Understanding individuals' mobility patterns and interpersonal close contacts is critical in 
modeling the spatial spread of infectious epidemics. During the COVID-19 pandemic, great 
efforts have been made on measuring human mobility patterns and tracing close contacts 
using mobile phone location big data and understanding their associations with COVID-19 
infection rates (Chang et al. 2021; Hou et al. 2022; Crawford et al. 2022). For example, 
researchers found a positive association between human mobility and COVID-19 infections 
at the county and the state geographic scales in the US (Gao et al. 2020; Xiong et al. 2020). 
It is worth noting that reduced mobility doesn’t necessarily ensure that people follow the 
social (physical) distancing guideline “staying at least 6 feet (2 meters) from other people”. 
Due to the mobile phone GPS location horizontal error and uncertainty, such physical 
distancing patterns cannot be identified from the use of aggregated mobility data. 
Individual-level interpersonal close-contacts (spatiotemporal co-location patterns) can be 
estimated using mobile device data and have shown better association with the infection 
rates than the mobility metrics (Crawford et al. 2022). 

However, there are multiple sources of uncertainty in measuring interpersonal close 
contacts using mobile device location data. (1) the positioning accuracy of mobile phone 
devices (Zandbergen 2009); (2) the noise (false positives) in the measurement of close 
contacts proxy (i.e., spatiotemporal co-location events); and (3) the choice of report 
location (residence vs. events). The positioning accuracy is various given different mobile 
device types and with different environmental contexts, which is hard to measure. 
Therefore, this research mainly focuses on the assessment of other two uncertainty sources: 
noise and choice of report location. 

Methods 

Close Contacts Measurements 
We employ a large-scale anonymized mobile phone device location panel data from 
UberMedia that covers 70% of the US population. The spatiotemporal co-location events 
(close contacts proxy) of each device is measured by calculating how many devices come 
within 5 meters of the target device within 5 minutes for a given time period (daily updates) 
based on their GPS locations. The first type of uncertainty comes from the spatial context; 
many detected “close contacts” are along major roadways and may be in separate vehicles, 
which are false positives from the epidemic modeling perspective and should be filtered as 
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noise. The second type of uncertainty comes from the choice of report location (home vs. 
event location) when aggregating individual device data into a geographic unit (e.g., census 
block, tract, zip code, county, and state). The close contacts pattern of a region could be 
different when changing the report location of a device from its common evening location 
(“home”) from 8pm to 8am on weekdays to the event location where the spatiotemporal co-
location events are detected and may occur in non-residence locations such as in work and 
social places. 

Evaluation Metrics 
In order to assess the uncertainty impacts of two sources on detected close contact patterns, 
we choose two commonly used evaluation metrics: root-mean-square-error (RMSE) and 
mean-absolute-error (MAE) to compare different processing methods on the state-level 
daily close contact measurements using the mobile device panel data over the study period. 

(a) 

(b) 
Fig. 1: The temporal patterns of daily mean close contacts (filter noise) (a) time series panel by each 

state in the US; and (b) its corresponding heatmap. 
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Results 
We first compute the US state-level daily mean close contacts of each device by home 
location and filter noise by removing all the co-location data points with moving speed of 
25 km/hr as the baseline. Fig.1 shows the temporal patterns and heatmap of daily mean 
close contacts by each state in the US from March 1st to May 30, 2020. We can see that the 
overall downward close contact trend during the state lockdown period from March 19th 
(when California was the first state issued the stay-at-home order) to the beginning of May, 
then the upward trend bounced back in the Memorial Day week (late May) when more 
people went out. However, for Washington D.C., it had persistent high close contacts 
across the study period, which might link to the gathering events in the presidential election 
year. 

Then, we compare the differences on the close contacts measurements from the above-
mentioned uncertainty perspectives including four types: (a) home location filtered noise; 
(b) home location with noise; (c) event location filtered noise; and (d) event location with
noise. As shown in Fig.2, their temporal patterns are quite different although the general
temporal trend remains during the statewide lockdown period. The median of the RMSE of
state-level daily mean close contacts with and without filtering "noise" (false positives) is
about 15 across all US states, which is larger than the choice of event location (median
RMSE: 1.36). The similar results remain when using the MAE metric, as shown in Fig. 3.

Our experiment results show that the "noise" (false positives) detected in close contacts 
generates larger errors than the choice of report location (home vs. event location). In addi-
tion, the population density (rather than total population) is positively correlated with the 
close contact measurement errors (false positives), with Pearson correlation coefficients of 
0.46 (p-value < 0.05) for RMSE and 0.47 (p-value < 0.05) for MAE, which provide critical 
information in understanding the virus spread and guiding social distancing policy in dif-
ferent regions using mobile device location big data. 

Fig. 2: The state-level temporal patterns of mean close contacts (y-axis) using different approaches. 
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Fig. 3: The RMSE and MAE results for comparing different close contacts measurement methods. 

Acknowledgement 
The author would like to thank the UberMedia Inc. for providing the anonymous mobile 
device data and acknowledge the funding support provided by the U.S. National Science 
Foundation (Award No. BCS-2027375). Any opinions, findings, and conclusions or 
recommendations expressed in this material are those of the author(s) and do not 
necessarily reflect the views of the National Science Foundation. Support for this research 
and travel is provided by the University of Wisconsin - Madison Office of the Vice 
Chancellor for Research and Graduate Education with funding from the Wisconsin Alumni 
Research Foundation. 

References 
• Chang, S., Pierson, E., Koh, P. W., Gerardin, J., Redbird, B., Grusky, D., & Leskovec, J. (2021).

Mobility network models of COVID-19 explain inequities and inform reopening. Nature, 589(7840),
82-87.

• Crawford, F. W., Jones, S. A., Cartter, M., Dean, S. G., Warren, J. L., Li, Z. R., ... & Morozova, O.
(2022). Impact of close interpersonal contact on COVID-19 incidence: Evidence from 1 year of 
mobile device data. Science Advances, 8(1), eabi5499.

• Gao, S., Rao, J., Kang, Y., Liang, Y., Kruse, J., Dopfer, D., ... & Patz, J. A. (2020). Association of
mobile phone location data indications of travel and stay-at-home mandates with COVID-19 infection
rates in the US. JAMA Network Open, 3(9), e2020485-e2020485.

• Hou, X., Gao, S., Li, Q., Kang, Y., Chen, N., Chen, K., ... & Patz, J. A. (2021). Intracounty modeling
of COVID-19 infection with human mobility: Assessing spatial heterogeneity with business traffic, 
age, and race. Proceedings of the National Academy of Sciences, 118(24).

• Xiong, C., Hu, S., Yang, M., Luo, W., & Zhang, L. (2020). Mobile device data reveal the dynamics in
a positive relationship between human mobility and COVID-19 infections. Proceedings of the 
National Academy of Sciences, 117(44), 27087-27089.

• Zandbergen, P. A. (2009). Accuracy of iPhone locations: A comparison of assisted GPS, WiFi and 
cellular positioning. Transactions in GIS, 13, 5-25.

LBS 2022

Page 125



Attractivity context graph for exploring the travel activity of Flickr users 

MATAN MOR AND SAGI DALYOT

Mapping and Geoinformation Engineering • The Technion • Haifa 3200003 • E-Mail: matam.mor@campus.technion.ac.il 

Geotagged photos are uploaded by users to social media photo-sharing online websites, which become very 

popular and commonly used by travellers to share their experiences. Interpreting these user-generated ‘digital 

footprints’ can be used to reconstruct travel trajectories of users to explore their travel activity and knowledge on 

the urban environment. In this work, Flickr geotagged crowdsource photo database is showcased to differentiate 

between the travel activity of two user-groups: tourists and locals. We develop an activity context graph based on 

two attractivity matrices: popular frequently visited places and locations, and popular connectivity between them. 

By analysing the geotagged photographs of all Flickr users visiting an urban destination, the graph’s nodes and 

edges resemble the overall travel activity patterns of both user groups. 

Classifying between the two user groups is non-linear, meaning that class boundaries cannot be well approximated 

using pre-defined parameters, such as visit duration. Accordingly, we develop a  supervised Random Forest 

machine-learning classification model to differentiate between tourists and locals. The model is based on an array 

of unique features, which are calculated based on the users’ a) social media footprint (e.g., total number of photos 

the user uploaded to Flickr), b) travel statistics (e.g., the accumulated distance covered by the user according to 

the sequence of all photos taken in the area), and, c) travel behaviour (city centrality indices that reflect the areas 

traversed by the user). After classification, for each user-group we construct the respective attractivity graph to 

analyse the unique travel patterns and behaviours. 

Using the Random Forest model, the classification produces very accurate results of F1-score above 90. The model 

shows that unique features, such as returning visits, which are not used in tourism research, are important to 

differentiate between the two groups. Based on the user-group differentiation, we construct the attractivity graph 

for New-York City, depicted in Fig 1. We show that tourists and locals travel to similar popular destinations. 

However, locals travel also to more dispersed places, while traversing through more peripheral zones in New-

York City. Moreover, tourists prefer to travel over short distances to maximize their travel experience, while locals 

allow themselves to travel over longer distances. The results show that travel information can be explored for 

measuring and analysing travel activity of different groups from user-generated content, aimed at enriching 

existing knowledge related to travel analysis and management in urban areas. 

Fig 1. Attractivity graph for New-York City: user visitation connectivity (edges) above the value of 200 between nodes 

(popular visited places and locations): tourists (left), and locals (right).
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Introduction 

GIS-based Campus Information Systems (CIS) can progressively be enhanced with 

different data and functionalities (Bansal, 2014, Mittlböck et al., 2017, Wilkening et al., 

2018, 2019). At the time of writing, the CIS at our university consists of a 2D map and a 

3D scene for visualization purposes, a routing network, and a database with information on 

buildings, lecture halls, offices and other facilities that can be queried. The CIS is under 

constant development: New features are being added in order to offer students and visitors 

a broad variety of information. 

In this paper, we focus on the integration of real-time environmental data into the CIS. 

These data include temperature, air pressure, humidity, and particulate matter and are 

acquired by a sensor unit called “senseBox” (Bröring et al., 2011, see Figure 1). 

Fig. 1: senseBox unit with interfaces for different sensors 

Integrating a stationary senseBox in the university network 

In order to connect the senseBox to the internet, one has to place a WiFi Bee, enter WiFi 

credentials in the C++ code and use Blockly or Arduino IDE to transfer the code to the 

senseBox. Afterwards, the senseBox can be programmed to send its measurements to the 

website opensensemap.org. 

While integrating the senseBox into a private WLAN in the manner described above was 

straightforward, the integration of the senseBox to the university’s digital infrastructure was 

a bigger challenge, due to higher security requirements. The WiFi bee thus could not be 

easily integrated into the university network by simply adding WiFi credentials. The 

solution consisted of using an upstream router and a mobile hotspot. 

After the senseBox was connected to the internet, we used ArcGIS GeoEvent Manager to 

query the openSenseMap API and process the data. GeoEvent Manager ist a real-time 

extension to ArcGIS Enterprise, which facilitates Server GIS on-premises with specific web 

services that cannot be hosted on ArcGIS Online. The data from the senseBox was 

collected with the input connector “Poll an External Website for JSON” and then forwarded 

to two output connectors: The first connector updates an existing point feature in a hosted 

Feature Service to recorded the latest measurements, which are displayed by a pop-up in the 

campus information system (see Figure 2). The second output connector adds 
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measurements as new features to a table, which is serving as a data archive. 

Fig. 2: Position of the senseBox in the CIS and pop-up with attribute values 

The next step consisted of preparing a web app (ArcGIS Dashboard) for analysis and 

visualization purposes. This web app queries the table and visualizes measurements in real-

time. The contents of the dashboard include charts with the temporal development of the 

measured data and a small web map with the position of the senseBox (see Figure 3). The 

measurements are held up for 24 hours and can be downloaded from the archive table on 

ArcGIS Online. 

Fig. 3: Interactive dashboard with web map and line charts for attribute values 
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Mobile senseBox 

We also tested the setup of a second (mobile) senseBox, which is equipped with a GNSS 

sensor. As a mobile unit, it links the captured environmental data to geographic coordinates 

and displays the live location and the attribute values on a Web Map. While this senseBox 

is not part of the campus information system yet, it can be used as a tool for easy mobile 

data capturing. 

The mobile senseBox is based on a Stream Service configured in ArcGIS GeoEvent 

Manager and stored on ArcGIS Server. A Stream Service emphasizes low latency, real-time 

data dissemination for client-server data flows1. The Stream Service, which measures the 

coordinates and the attributes of the mobile sensebox, was then saved as a Feature Layer on 

ArcGIS Online to make it accessible for several other apps. The recorded data is stored in a 

table on ArcGIS Online, similar to the data of the stationary senseBox. 

For the mobile senseBox, we also configured a dashboard with the position and charts for 

the measurements, which is optimized for handheld devices like smartphones and tablets. 

Summary and outlook 

The project described above shows that it is possible to integrate senseBoxes into Campus 

Information Systems (CIS) within the scope of a bachelor’s thesis. With the means of 

GeoEvent Server as a software component and its input and output connector capabilities, 

we also created several Feature Services. These web services provide the basis for different 

web apps, such as dashboards. 

Due to the few amount of tutorials, the integration process consisted of many trial-and-error 

iterations. It was necessary to simplify and combine input and output processes to reduce 

data volume, reduce data traffic and achieve a stable configuration. 

Currently, other sensors are evaluated that can be integrated en route to a “Smart Campus” 

at our university. The integration of a senseBox into a CIS is an important step to help 

stakeholders to make smarter decisions, save energy and optimize resources, based on 

actual data values that are displayed in a web app. 
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Introduction 

Availability of open data and powerful open source libraries have significantly altered the 

way contemporary geospatial science is conducted. For instance, OpenStreetMap (OSM) has 

become a central data source for geographical analysis, used extensively both in academic 

research and business. As a free, crowdsourced digital map and database of the world (Haklay 

and Weber, 2008), it provides crucial geographical data that are commonly used for providing 

useful services for people, such as navigation, and analyzing various urban phenomena. In 

addition, datasets such as General Transit Feed Specification (GTFS) provides information 

about public transportation systems and how people can reach places (Mahajan et al., 2021). 

GTFS data is available from thousands of cities across the world, allowing the researchers to 

study accessibility and mobility related questions in urban areas. 

In this talk, we introduce a couple of new open source Python libraries called pyrosm and 

r5py that make it possible to conduct large-scale geospatial analyses in a reproducible man-

ner. Pyrosm (Tenkanen, 2021) is an efficient data extraction tool that enables extracting var-

ious useful datasets for accessibility and mobility studies from OpenStreetMap (buildings, 

roads, services and other points of interest, landuse, etc.). Pyrosm converts OSM data into 

GeoDataFrame which is the basic data structure of geopandas. Geopandas is the core library 

for modern geospatial analysis in Python, having a broad ecosystem of spatial analysis librar-

ies built on top of it. Pyrosm has been optimized for performance allowing e.g. large-scale 

spatial network analysis based OSM data extracts covering city regions or even countries 

(Figure 1). The library also supports extracting historical data from OSM (OSH.PBF format), 

which enables conducting spatio-temporal analysis, such as detect changes in urban areas. 

The historical data extraction functionality also allows full reproducibility in scientific pa-

pers, because the authors can pinpoint to a specific moment in OSM history and extract the 

data layers as a snapshot of given moment in time. 

Fig. 1: Roads and buildings extracted from OSM with pyrosm -library covering the New York State. 
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Pyrosm is a useful tool to gather relevant geospatial data e.g. about built environment and 

services, which can be used as relevant input data for “Rapid Realistic Routing with R5 in 

Python” package called r5py. R5py is a Python wrapper for the Java-based R5 routing anal-

ysis engine (Conway et al., 2018) that allows realistic routing on multimodal transport net-

works (considering walk, bike, public transport and car). The tool is inspired by r5r (Pereira 

et al., 2021), a similar tool for R programming language, and the packages are developed in 

collaboration. R5py is designed to interact with geopandas GeoDataFrames, and it can be 

used together with pyrosm. R5py represents a simple but efficient way to run R5 routing en-

gine which is originally developed by Conveyal LLC. Conveyal is the same company that 

has heavily contributed to the development of OpenTripPlanner. R5py uses OpenStreetMap 

and GTFS as input and constructs a routable multimodal graph based on these datasets. R5py 

can be used to generate detailed routing analyses or calculate travel time matrices using par-

allel computing, which are relevant information for studying various geographical phenom-

ena, where spatial accessibility plays a role. The tool allows taking urban dynamics into con-

sideration and the user can easily specify the date and time of day for the analysis. Hence, 

also historical analyses are possible with r5py (in a similar manner as with pyrosm), and you 

can e.g. investigate longitudinal changes in urban accessibility due to changes in transport 

infrastructures and schedules. R5py integrates seamlessly with modern data analysis work-

flows based on open source Python libraries having a linkage to geopandas. 

Fig. 2: Travel times to Helsinki city centre by public transport calculated with r5py -library. 

In combination, pyrosm and r5py provide useful scientific software for urban researchers and 

practitioners alike. The libraries and their documentation are available at: 

• https://pyrosm.readthedocs.io/en/latest/

• https://r5py.readthedocs.io/en/latest/
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Summary: Existing mobile indoor navigation systems primarily provide human wayfinders turn-by-

turn route instructions on a uniform level of detail. In realistic navigation guidance, however, 

wayfinders may often prefer more concise route instructions, especially if they are (particularly) 

familiar with a building. While it would be useful to develop an indoor navigation system that can 

provide users with multiple levels of detail of indoor route instructions, there are few approaches to 

generating such a fashion of indoor route instructions. In this extended abstract, we propose an 

approach to generating indoor route instructions with multiple levels of detail. The approach is 

composed of three steps: route matching to a given hierarchical indoor data model, textualization 

using proposed schemas, and spatial relation inference for the textualization. The approach enables 

the automatic generation of indoor route instructions for hierarchical indoor navigation guidance 

and thus improves the usability of indoor navigation systems. 

Introduction 

People commonly communicate route information at multiple levels of detail (LoDs) rather 

than using highly detailed turn-by-turn directions (Tenbrink and Winter, 2009). The 

advantage of route communication at multiple LoDs is that it results in more concise route 

instructions that adapt to route receivers’ or wayfinders’ background knowledge and thus 

facilitate the understanding and memorizing of communicated route information as well as 

improve navigation performance (Daniel and Denis, 2004; Lovelace et al., 1999). This also 

applies to indoor environments in addition to outdoor environments (Winter et al., 2018). 

However, existing indoor navigation systems, such as MazeMap (https://use.mazemap.com/ 

), primarily provide users with turn-by-turn route directions. Although some attempts have 

been to enrich semantic information of route directions by including indoor landmarks 

(e.g., “turn right after the elevator, you will pass through one door”; see Fellner et al., 

2017), the instructed routes are still restricted to each segment. Therefore, it is likely to 

offer excessive route information to users and increase their workload to memorize and 

follow route instructions. 

By contrast, indoor route instructions with multiple LoDs are able to abstract the 

information of route segments to other indoor spatial elements (e.g., floor, corridor, 

corridor part, intersection, side) that are understandable to humans and benefit users to 

choose the appropriate level of route instructions. For example, an instruction such as “go 

to the 3rd floor ” may be enough for staff working in the building. However, if a user who 

visits the building for the first time does not know the locations of elevators or staircases, 

more detailed information to find an elevator in the building, such as “turn right at the third 

section of the corridor, you will find an elevator ”, can be further provided. 

We have developed a hierarchical indoor data model to support the generation of indoor 

route instructions with multiple LoDs (Zhou et al., 2022). However, computational methods 

are still missing regarding how various levels of elements in the hierarchical model can be 

translated into appropriate texts of hierarchical indoor route instructions. Therefore, we 

propose a computational method to automatically generate indoor route instructions with 
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multiple LoDs based on the given hierarchical data model. 

Proposed approach 

The approach is mainly composed of three steps: route matching, schema-based 

textualization, and spatial relationship inference. A given route (e.g., the shortest path 

between an origin and a destination) in a building is taken as input and matched to the 

adopted hierarchical indoor data model, resulting in a route extending over six levels of the 

hierarchy (except the building level). 

In the second step, two types of route instruction schemas, destination descriptions, and 

route directions are used to convert the information of route points, the inferred directions, 

and ordering relationships into textual route instructions. The former paradigm focuses on 

the “where” question in route communication, while the latter paradigm answers the “how” 

question in route communication. 

Finally, we compute the spatial relations between segments of the matched route. In this 

work, we mainly consider two types of spatial relations for indoor route instructions: 

egocentric directions including left, right, up, and down, and ordinal relations such as first, 

and second. The spatial relation inference algorithms are thus developed to identify the 

specific spatial relation terms required for textualization. 

Case study 

We conducted a case study on the Y25 building at the University of  Zurich to demonstrate 

the proposed approach for the generation of indoor route instructions with multiple levels 

of detail. The test route is shown in Fig. 1 and the corresponding generated route 

instructions with multiple LoDs are given in Table 1. Since the work is still ongoing, we 

expect to present the comparison results between the generated route instructions and 

typically used flat turn-by-turn route directions to evaluate the benefits and limitations of 

our implemented results at the conference. 

Table 1. The generated route instructions at six levels of detail for test route 

Levels Results 

Level 1 (floor) 

1. Start from the main entrance

2. Take the staircase to L floor

3. Coffee room is on that floor 

Level 2 (axial) 

1. Start from the main entrance

2. Take the staircase to L floor

3.1 Exit the staircase 

3.2 Turn to the right corridor 

3.3 Coffee room is along that corridor 

Level 3 (segment) 

1. Start from the main entrance

2. Take the staircase to L floor

3.1 Exit the staircase 

3.2 Turn to the right corridor 

3.3.1 Go along the corridor to the third part of the corridor 

3.3.2 Coffee room is situated in that part 

Level 4 (junction) 

1. Start from the main entrance

2. Take the staircase to L floor

3.1 Exit the staircase 

3.2 Turn to the right corridor 

3.3.1 Go along the corridor to the third part of the corridor 

3.3.1.1 You will pass two fire emergency doors 

3.3.2 Coffee room is situated in that part 

Level 5 (side) 

1. Start from the main entrance

2. Take the staircase to L floor

3.1 Exit the staircase 

3.2 Turn to the right corridor 
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3.3.1 Go along the corridor to the third part of the corridor 

3.3.1.1 You will pass two fire emergency doors 

3.3.2 Coffee room is situated in that part 

3.3.2.1.1 You will find it on your left side 

Level 6 (basic) 

1. Start from the main entrance

2. Take the staircase to L floor

3.1 Exit the staircase 

3.2 Turn to the right corridor 

3.3.1 Go along the corridor to the third part of the corridor 

3.3.1.1 You will pass two fire emergency doors 

3.3.2 Coffee room is situated in that part 

3.3.2.1.1 You will find it on your left side 

3.3.2.1.1.1 It is the first room 

Fig. 1: Test route of the case study 

Conclusions 

This extended abstract presents an automatic approach to generating indoor route 

instructions with multiple levels of detail, which addresses the limitation of existing turn-

by-turn fashion in indoor navigation systems and allows users to choose the approximate 

content of navigation guidance in buildings. In the future, we will investigate the 

relationships between a certain LoD of indoor route instructions and the familiarity of users. 
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Summary: In this work, we show how to expose CityGML data as a Virtual Knowledge Graph (VKG). 

We use 3DCityDB to store the CityGML data, and Ontop to build the VKG. We demonstrate the work-

flow using the models of the main campus of Technical University of Munich. 

Introduction 

3D city models have been increasingly employed for advanced visualization and analysis 

tasks in various LBS applications, including indoor navigation and emergency rescue (Sun 

et al., 2020), and virtual and augmented reality (Santana et al., 2017). A widely adopted 

standard for the representation and exchange of 3D city models is CityGML (City Geography 

Markup Language)  by Open Geospatial Consortium (OGC). It defines the three-dimensional 

geometry, topology, semantics, and appearance of the most relevant topographic objects in 

urban or regional contexts. Specifically, the representation of semantic and topological 

properties distinguishes CityGML from pure graphical 3D city models and enables thematic 

and topological queries and analyses. 

One objective of CityGML is to inter-relate the 3D city information with other data to create 

a more complete representation of the urban landscape (Kutzner et al., 2020). However, this 

has not been exploited much in the research community. In this work, we tackle this problem 

by using semantic web technologies, and move urban data into Knowledge Graphs (KGs). 

Thanks to the flexibility of the graph structure of KGs, multiple KGs can be easily integrated 

when they use vocabularies shared through ontologies. Many studies proposed geo-

ontologies and so-called GeoKGs to represent domain knowledge and support geospatial data 

integration. Most of these works integrate the geodata sources by converting and 

materializing the original data as an RDF graph, and then storing such graph in an RDF store 

(Vinasco-Alvarez et al., 2020). Due to the resulting duplication of data, this way of proceeding 

can be expensive, especially when data sets are large or change frequently. 

To overcome the challenges posed by materialization of the RDF graph, a different approach 

has been proposed, called Virtual Knowledge Graph (VKG) (Xiao et al., 2019). VKG is a 

popular paradigm that enables end users to access data sources through an ontology, which 

is semantically linked to the data sources by means of a mapping. Such mapping is expressed 

in the R2RML language standardized by the W3C. Thus, the ontology and mapping together, 

called a VKG Specification, expose the underlying data source as a virtual RDF graph, and 

make it accessible at query time using the standard W3C query language SPARQL. Using 

knowledge representation and automated reasoning techniques, a VKG system will then rea-

son about the ontology and mapping and reformulate the SPARQL queries in terms of queries 

that can be directly evaluated at the data sources. This makes it possible to avoid the high 

cost of materialization. Such VKGs can be used in several application areas for LBS, such as 
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dynamic semantic integration of urban information, and smart queries for PoI 

recommendations in routing algorithms. 

Methodology 

We proposed a framework called CityGML VKG as illustrated in Fig.1. We store the 

CityGML data into a relational database, and create a VKG specification (i.e., an ontology 

and a mapping). Then we use the popular VKG system Ontop (Calvanese et al., 2017) to 

expose the CityGML data as a VKG, which can be queried using the standard SPARQL query 

langauge. 

Fig. 1: Framework of CityGML VKG 

Test data 

We use the CityGML data of the main campus of Technical University of Munich as the test 

data (Fig 2). We make use of the 3DCityDB project, which implements the standard SQL 

encoding of CityGML, and import the sample data to 3DCityDB using PostgreSQL as a 

backend. 

Fig. 2: The main campus of Technical University of Munich 

Virtual Knowledge Graph Creation 

We adopt the CityGML ontology1 created by the University of Geneva, shown in the left part 

1 http://cui.unige.ch/isi/onto//citygml2.0.owl 
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of Fig. 3. We have developed a suitable R2RML mapping (the right part of Fig. 3) to 

3DCityDB using the ontology editor Protégé with the Ontop plugin. 

Fig. 3: The ontology and mapping editor in Protégé with the Ontop Plugin 

Example Query 

We show one example query in Fig 4, which retrieves all the buildings, together with their 

addresses and the LOD 2 solids. When evaluating this query, Ontop translates it into a SQL 

query, and sends it to the 3DCityDB backend. 

Fig. 4: An example SPARQL query evaluated in the SPARQL endpoint of Ontop 

Conclusions 

We have developed a proof-of-concept system for exposing CityGML data as a VKG. In the 

future, we will extend the coverage of the mapping, intregrate other datasets into the VKG, 

and apply the technology in LBS applications. 
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Summary: Any data analysis commonly begins with data exploration which involves much repetitive 
work as most explorations include similar steps. Tools have been developed for tabular data to accel-
erate and facilitate those procedures (e.g., Brugman, 2019). While of great use for regular tabular 
data, these tools are rather poorly applicable to human mobility data as, e.g., the average of latitude 
or longitude typically does not provide relevant insight. Graser (2021) presents a protocol for an 
exploratory data analysis (EDA) for continuous movement data with the goal to identify problems, 
such as unrealistic jumps in GPS traces. Our work, in contrast, focuses on EDAs for origin-
destination trips of urban human mobility data. We introduce a open-source Python package that 
provides such standardized explorations as a Mobility Report. 

Human mobility data becomes increasingly available from various sources, e.g., through the rise of 
location-based service apps, shared mobility, or the digitalization of public transport, for example, 
with the use of smart cards. This data is of great importance for an informed and efficient design of 
sustainable urban mobility (Creutzig, 2021). Thus, in addition to the use of initial explorations for 
data analysts, summary reports are increasingly released to third parties, such as municipal admin-
istrations or in the context of citizen participation, and serve as a basis for decision-making process-
es. However, it is often overlooked that such explorations already pose a threat to privacy as they 
reveal potentially sensitive location information, which is why even aggregated statistics should not 
be shared without further privacy measures (Nuñez von Voigt et al., 2020). We thus provide differen-
tial privacy guarantees for the reports produced with the proposed dp_mobility_report package to 
share mobility statistics in accordance with state-of-the-art privacy measures. 

Within this work, we elaborate on the implementation of the code package. Two mandatory user 
inputs are needed to create a report: the raw data itself and an amount of privacy budget. Additional 
optional parameters can be used to customize the report. The produced report, provided as an 
HTML-file, is structured into the four segments overview, place analysis, origin-destination analysis, 
and user analysis that comprise the most common analyses typically conducted with urban human 
mobility datasets. The overview provides basic information on record, trip, and user counts, in addi-
tion to temporal properties. The place analysis segment entails information about the spatial distribu-
tion of the data and the most visited locations. The origin-destination section informs about the most 
commonly traveled connections, travel times, and distances. The user analysis segment gives insights 
on statistics related to users, such as the radius of gyration, number of unique locations visited per 
user or the mobility entropy. We provide detailed information about each segment, including the 
respective statistics and visualizations. 

Furthermore, we give insights on different issues that must be considered with the implementation of 
differential privacy: Firstly, we discuss the issue of user-level privacy. Intuitively, the more records a 
user contributes to a dataset the more likely they will be identified. When differential privacy is se-
cured by adding noise to the data, a high number of records per user requires a larger amount of 
noise and thus reduces the utility of the generated statistics  (Amin et al., 2019). This poses the chal-
lenge of handling arbitrarily large user contribution as in general, an upper limit is not known up-
front. We solve this issue by setting an upper bound and removing exceeding records. The number of 
maximum contributions per user can be set with an input parameter by the data analyst. 

Secondly, leaking true minimum and maximum values, e.g., the minimum and maximum travel time, 
violates differential privacy. Thus, we use the exponential mechanism (McSherry & Talwar, 2007). to 
produce five-number summaries and cut related statistics, e.g., the travel time histogram, according 
to the differentially private minimum and maximum values. To provide differentially private histo-
grams, Laplace noise is added to single histogram bins. 
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Thirdly, differential privacy makes use of a privacy budget which defines how much information can 
be shared about individuals within the dataset. The higher the budget, the less noise is added and thus 
the less the privacy is protected. If data is used for more than one analysis, the privacy budget needs 
to be split between all analyses to stay within budget. For a report which compiles a series of anal-
yses, the question of an optimal budget splitting arises. We propose a default split that can be custom-
ized through user input. Additionally, the package offers the option to remove analyses from the 
report so that more budget can be spent on only selected analyses. 

Lastly, sparse data produces especially noisy results. Implemented solutions for the communication of 
noise levels and uncertainty within the report are described and discussed in this work. 

A workshop with mobility data practitioners provided a first evaluation of the package in terms of 
functionality and use cases. 
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Summary: In the dust storm (DS) process, analysing and predicting the movement of dust are crucial 

because it reveals their transport pathway and examines the next vulnerable areas to the dust event. 

By adopting a deep convolutional neural network (CNN) method, this study aims to predict the path-

way of DSs that occur in an arid region in central and south Asia. 30 dust storms are extracted from 

the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2) product 

to train the model and evaluate the results. The overall accuracy of 0.973 for the next 10 hours shows 

that CNN can establish an accurate prediction for the dust transport pathway.

Introduction 

Moving processes (e.g., dust storms and fire spread), in contrast to moving point objects 

(e.g., humans and vehicles), are areal phenomena whose sizes constantly changing. Robust 

methods are required for not only analyzing the transport pathway (trajectory) of moving 

processes but also for modeling their dynamic areas (Boroumand et al., 2022; Goudarzi et 

al., 2022). Among moving processes, dust storm (DS) is a common source of mineral 

aerosols and is recognized as a serious environmental hazard, especially in arid and semi-

arid regions (Prospero et al., 2002). Dust movement prediction is an important part of 

controlling air quality, by which we can take steps towards decreasing the impact of dust on 

the atmosphere. 

Owing to the remote sensing technology, monitoring DSs is possible in different spatial and 

temporal resolutions. Aerosol Optical Depth (AOD) is a basic parameter that reflects aero-

sol optical properties in satellite images. MERRA-2 is a reanalysis data product from 

NASA to observe the earth, and the MERRA-2 AOD observes aerosol at 0.5°×0.625° reso-

lution since 1980 (MERRA, 2015). Therefore, it is a suitable product for hourly monitoring 

of DS movements. On the other hand, deep learning methods are becoming increasingly 

popular in DS movement prediction. Deep convolutional neural networks (CNNs) have 

been substantiated by other researchers as a model to achieve more accurate outcomes for 

DS analysis and pathway estimation (Jiao et al., 2021). Therefore, the objective of this 

research is to predict the transport pathway of DSs using MERRA-2 dataset and a deep 

CNN method. 

Material and Method 

An arid study area in Turkmenistan, Iran, Afghanistan, and Pakistan is chosen (Fig. 1). The 

occurrence of 30 DSs for a total of 1858 hours between 2000 and 2021 are derived from the 

media and validated with the MODIS AOD dataset, and the hourly MERRA-2 AODs are 

extracted. Because we are facing a time series problem, the data is divided into input and 

output categories. The input dataset contains images of MERRA-2 AOD with 140×143 

pixels at t time step and the output dataset contains visually labelled images from t+1 to 

t+10 time steps. This means that the data of the last hour is used to predict the next 10 hours 

of the DS. 
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In the CNN architecture, the main task of the convolution layers is learning the features 

from input data. In this research, nine (3×3) convolutional layers consisting of 64, 128, 32, 

32, 32, 32, 32, 32, and 16 filters are selected. The extracted features are flattened and 

passed into two dense layers consisting of 64 and 140×143 neurons, respectively. For all 

the layers, the Rectified Linear Units (ReLUs) are used as activation functions (Glorot & 

Bordes, 2011), except for the last layer that uses sigmoid. L2 regularization with value of 

0.0001 and Adam optimizer with a batch size of 4 are used (Kingma & Ba, 2015). The 

learning rate of 0.0005 is considered during the training process and binary cross-entropy 

has been used as a cost function. Fig. 2 shows the three stages of model input, feature ex-

traction, and model output. 

Fig. 1: Study area (in light red) and a sample DS that originates from Turkmenistan (in dark red) 

Fig. 2: Framework for DS transport pathway prediction 
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Results 

90% and 10% of the data are used for training and validation of the model, respectively. 

Fig. 3 shows the sample confusion matrices of the 1st, 5th, and 10th time steps. The evalua-

tion of the model is based on the conformity between prediction and reality that is meas-

ured by the Jaccard distance, which measures dissimilarity between sample sets. The over-

all accuracies of DS predictions of the next 10 time steps are shown in Table 1. The results 

justify the robustness of the CNN method in transport pathway prediction of DSs and ex-

amining the next vulnerable areas to the dust event. 
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DS Not DS   DS Not DS   DS Not DS 

Predicted   Predicted   Predicted 

(a) (b) (c) 

Fig. 3: Confusion matrices of three time steps, (a) t+1, (b) t+5, and (c) t+10 

Table 1: Overall accuracy of DS predictions of the next 10 time steps 

1h 2h 3h 4h 5h 6h 7h 8h 9h 10h 

Accuracy 0.9777 0.9791 0.9796 0.9796 0.9796 0.9793 0.9792 0.9786 0.9783 0.9773 
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Summary: This work proposes the concept of the mobile application for learning
cartography. By using location-based services, it is possible to playfully gain or strengthen
cartographic knowledge while moving between different stations.

Digital learning has become more topical because the pandemic has challenged the traditional
learning approach. This project aims to bring the cartography class outdoors and learn
cartography as it can be experienced outdoors with digital learning. The main idea of the
mobile application "CartoWalk" is to explore certain places in Vienna city and to learn
cartography. In addition, users can test existing knowledge and thus strengthen it.

A target group is a group of students who attend Cartography class. They have to navigate
sights using the interactive map and then answer questions and solve the tasks about specific
cartographic topics. These sights are called stations, which will be well-known landmarks in
Vienna. Whenever the user moves, the path will be marked in the app, and it will always be
visible where to find the next station.

Individual stations could cover different topics, for example, cartographic generalization.
Example questions of this station could be what the users already know about generalization,
why generalization is made, and how to recognize that a map has been well generalized. The
users will also receive the questions related to a given map where they should identify which
cartographic generalization operators have been used.

The topic of another station could be symbolization and graphical variables. Some questions
could be why cartographers use map symbols and graphic variables. Each group will receive
a different map, which will address specific topics, such as traffic, gastronomy or green
spaces. These maps use symbols consisting of graphic variables that users can examine.

At the station about mapmaking, users can learn about map production and the principles
used when creating the map. The station about map labeling will include a sample task to
identify which map was labeled correctly based on different maps. At the station dedicated to
the map’s layout, the target group should learn its elements and answer what map layout
components were used.

With the help of all these stations, it should be possible to acquire basic cartographic
knowledge by using the map. The application will teach users to deconstruct maps and be
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critical of the map design. Location-based services in mobile applications enable to find all
stations easily and thus achieve an optimal learning effect.

The application will be developed by the end of September 2022 and will result in a
bachelor’s thesis.
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Abstract 

To establish the bicycle traffic as a climate friendly alternative to the motorised private 

transport, a rethinking of city planning in terms of traffic is necessary. The analysis of ex-

isting spatiotemporal data from road users is crucial for planning streets and junctions in a 

way, which fits the needs of cyclists. 

In the present thesis spatiotemporal data of cyclists at the junction of Theresienstraße and 

Ludwigstraße in Munich is visualised by bicycle trajectories in a space-time cube (STC). 

The data, which is used for the visualisation, is collected by a video camera with a frame 

rate of 30 frames per second. After converting each individual video frame to an orthopho-

to, road users are detected using computer vision methods, localised and tracked between 

the georegistered video sequences (Adamec et al., 2018). For the upcoming visualisation of 

the trajectories merely the 260 bicycles of a total of 1113 road users are considered, which 

corresponds to one half of the recorded cars in the selected time frame of 17 minutes and 40 

seconds. The raw dataset is reduced and pre-processed into a transformed dataset of re-

duced memory storage to improve the performance of the further visualisation methods. 

To account for a user-defined filtering function and other visualisation options, a graphical 

user interface (GUI) is implemented in MATLAB. By using this tool, the dataset of the 

aforementioned crossing can better be analysed in terms of the cycling behaviour. The GUI 

contains different tools, such as a feature, which filters the visualised trajectories for the 

origin and destination of the bicycles, therefore it is possible to analyse a specific bicycle 

stream. Another filtering feature, which is realised by a double slider, allows for the reduc-

tion of the amount of shown trajectories. Moreover, one can display the traffic lights, which 

are switched for the respective traffic flow. The traffic light circuit is visualised by spheri-

cal dots in green or red, which are shown as long as a cyclist sees the traffic light, see Fig-

ure 1. Two other features are the visualisation of the direction of traffic through small ar-

rows and the possibility to show the velocity of the road users at a specific position, 

through a colouring of the trajectories. With the help of a colourbar, the respective speed 

from the colour of the trajectory can be read off. 

By using the features of the GUI it possible to get a clearer picture of concrete driving pat-

terns, which are visualised within the STC. Especially, the possibility of a data reduction by 

the aforementioned filtering features is crucial. It allows the user to keep track of the huge 

number of trajectories and analyse the behaviour of single cyclists. One specific pattern of 

the observed road users is the disregard of the red traffic light, which can be seen in Figure 

1. The cyclists of the straight traffic flow of the Ludwigstraße, which are ignoring the red

light are marked by 1 and 2. After a detailed analysis one can see, that these cyclists crossed

the red traffic lights with a high velocity of around 20 km/h. A possible explanation for this

behaviour can be determined with the help of the available video material. By using this, it

becomes apparent, that the cyclists were not under immediate danger, as there were no

motorised vehicles in the field of view. By a further analysis of the available dataset other
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patterns can be observed with the implemented tool. One example is the driving behaviour 

at traffic lights, which can be best analysed by considering the bicycle velocities in the 

colourmap. This could be useful to help matching the traffic lights to cyclists and therefore 

to improve the traffic flow for this group of road users. One last pattern, which can be seen 

in the STC is the crossing behaviour of the cyclists, which is characterised by its diffuse 

picture. Part of the cyclists choose the possibility to use the same way as the motorised 

vehicles others the same way as the pedestrians. A special trend, which way is preferred by 

the cyclists cannot be ascertained. 

With the visualisation method of the space-time cube it is possible to visualise traffic pa-

rameters such as the time to collision (TTC) and the post encroachment time (PET). In this 

work, the two parameters were determined using two different trajectory examples. The 

visualisation of the TTC and PET is quite challenging to automate and therefore difficult to 

visualise for all the trajectories at the same time. 

Besides the analysis of the dataset itself, an expert interview was conducted to assess the 

usability of the GUI. Therefore, five contributors of the chair of traffic engineering and one 

contributor of the chair of cartography at Technical University Munich were interrogated, 

after they had a chance try out the features of the GUI. The experts’ suggested improve-

ments can be included for further work. 

Fig. 1: Disregard of a red traffic light of the straight traffic flow of the Ludwigstraße 
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Summary: Fire is one of the frequent emergencies that threaten people's lives. The knowledge graph 

is an important tool to reveal entities and their interrelationships, and it plays an increasingly im-

portant role in emergency disaster reduction. At present, there are few knowledge graphs constructed 

in the field of fire emergency. This paper preliminarily explored the construction method of fire emer-

gency knowledge graph, and the key technologies mainly include knowledge extraction, information 

fusion, and knowledge storage. Finally, the application direction of fire knowledge graph in indoor 

emergency path planning is discussed, and the three-dimensional fire simulation is realized by taking 

an office building as an example. 

Introduction 

Fire is one of the disasters that occur most frequently and threat to human life. The high 

temperature and toxic smoke produced by fire combustion will seriously affect the 

physiology and psychology of the people, make the people lose their way in the building, 

and even cause casualties (Aleksandrov et al., 2018; Riboulet 2018). The main factors 

affecting personnel emergency include toxic gases, visibility, emergency system, etc. (Jeon 

et al., 2011; Butler et al., 2017). 

The essence of knowledge graph is a semantic network that reveals the relationship 

between entities (Nickel et al., 2015). Usually, nodes are used to represent entities, concepts 

and events, and edges are used to represent relationships. When a disaster occurs, the data 

is effectively aggregated, fused, and stored based on the knowledge graph, which helps to 

quickly obtain useful information. 

Disaster emergency rescue is usually participated by multiple social subjects. The 

knowledge graph can establish the network relationships among different fields, different 

entities, disaster data, and disaster events. 

Construction of fire emergency knowledge graph 

The knowledge graph construction process is shown in Figure 1. First, multi-source 

heterogeneous data is processed, and then knowledge such as entities, attributes, and 

relationships are extracted according to application scene, and various kinds of knowledge 

are classified and integrated. Finally, the knowledge graph is stored in the form of a graph 

structure. 

Fig. 1: Construction process of knowledge graph 

This research focused on fire emergency, adopted the top-down manual modeling method 

to build a knowledge graph, and extracted the knowledge of entities, elements, and 
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relationships for the models, data, combustion elements, emergency  personnel involved in 

the fire. Figure 2 shows a part of the fire emergency knowledge graph. 

Fig. 2: Fire emergency knowledge graph (partial display)

Key idea of indoor emergency path planning 

By analyzing the fire model, data, emergency departments, and other elements, after 

building the knowledge graph, we concluded that it has at least four applications: 

(1) Knowledge fusion of fire numerical model and building information model

(2) Quickly realize the fusion of multi-source heterogeneous data

(3) User-oriented emergency path planning guidance

(4) Integration the emergency path and the fire emergency scene

According to the guidance of the constructed fire emergency knowledge graph, we have a 

research idea for indoor emergency path planning in fire scene, as shown in Figure 3: 

Fig. 3: Research ideas of indoor emergency path in fire scene

We choose an office building as the study area. According to the guidance of the 

constructed knowledge graph, the fire model can choose the FDS model and the fire 

environment data should at least include temperature, smoke, and visibility. Through 
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Pyrosim established a fire simulation scene, recording and analyzing visibility, temperature, 

and gas concentration in the fire smoke, the simulation results are shown in Figure 4. 

Fig. 4: Smoke diffusion and temperature distribution in the study area 

Conclusion and future plan 

This study has preliminarily constructed the fire emergency knowledge graph, and studied 

in the application direction of indoor emergency path planing. However, it is also necessary 

to conduct in-depth analysis of fire models, fire data, emergency management and other 

elemens to further improve the fire emergency knowledge graph. In the future, the 

knowledge graph will be applied to fire data fusion and emergency path planning to provide 

personal location-based emergency services in fire scene. 
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Summary: In urban waterlogging disaster, the severity of road waterlogging will have a direct impact 

on the safety of urban residents’ driving (Yin, 2016). However, the commonly used navigation software 

lacks the function of forecasting and early warning for route waterlogging in navigation paths, and 

cannot meet the need for users’ safe driving in extreme weather conditions, such as heavy rain. In view 

of the above problems, this study intends to design a waterlogging classification early warning algo-

rithm for the navigation route. Among them, the calculation and extraction of navigation route water-

logging depth information and its fusion application with navigation algorithm are the key problems of 

this research. 

Our research mainly includes the following four aspects: 

(1) Quantitative estimation of rainfall data. Based on rainfall echo rates from Doppler weather radar

data, we choose the Z-R relationship (where Z is the rain radar reflectivity and R is the rainfall

intensity) to estimate rainfall in the study area (Sokol, 2021), and combined with the rain gauge

data of the ground observation station to correct the rainfall data estimated by Doppler weather

radar.

(2) Simulation of inundation in the study area. Based on the pipe network data, we divide the study

area into multiple sub-catchments, and the model parameters are determined according to the

recommended value range of the hydrological model manual based on the analysis of the actual

situation such as the characteristics of the study area. Then, combining the SWMM hydrological

model with the surface DEM of the study area, and based on the terrain inundation algorithm, we

construct an urban surface inundation module to simulate the urban waterlogging inundation pro-

cess in the study area.

(3) Navigation route waterlogging depth calculation. By superimposing the distribution grid map of

urban waterlogging in the study area with the distribution map of the urban road network, we can

obtain the grid map of road water accumulation in the study area. Each cell value of the raster

map represents the average water depth based on the average spatial elevation of the cell. Since

water is a fluid, it can remain level everywhere as the water surface flows automatically, so we

only need to know the actual elevation of the sampling point, and then offset it from the average

elevation. Finally, based on the waterlogging classification standard for the vulnerability of the

disaster-affected body (Li, 2015), we designed a road traffic classification rule that considers the

depth of water accumulation.

(4) Design and Verification of Navigation Warning Algorithm. The user's location is constantly

changing during the navigation process. This study uses the A* algorithm to combine the user's

location information to plan the user's navigation route in real time. In addition, the maximum

water depth information max(depth) of the route sub-section is introduced into the A* algorithm.

Before executing the heuristic function f(n) of the A* algorithm, we add the judgment of the road

water depth passage rule. Based on this, we propose the navigation route waterlogging classifi-

cation early warning algorithm. In order to verify the navigation algorithm designed in this study,

we will develop a prototype system by combining Mapbox GL and AutoNavi map API.
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The classification early warning algorithm of navigation route waterlogging designed in this study can 

provide meteorological disaster early warning information on the navigation route for the existing 

commercial navigation map software, and can also help the urban road traffic vulnerability evaluation 

research. 
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Summary: Enhancing the accuracy of boundary markers in the Finnish cadastral index map was stud-

ied with reference positions by RTK GNSS and with crowdsourced positions by a smartphone game. 

Least accurate marker coordinates were importantly improved by smartphone positioning but addi-

tional correction methods are required to reach high-enough accuracies for practically significant na-

tional mapping by crowdsourcing. Considerable amounts of participating citizens and their measure-

ments show high potential for the future of smartphone crowdsourcing for national mapping agencies. 

Introduction 

The Finnish cadastre and its physical border marker monuments have a long history dating 

back to the early 21st century – for some monuments, centuries earlier. The cadastral index 

map is the digital representation of physical boundary monuments in the terrain. The map 

contains over 13 million digital border markers and is provided as open data. However, three 

millions of the markers have low spatial accuracy of more than one meter. The inaccuracy 

causes border issues for the users of the cadastral index map (Rönneberg & Kettunen, 2021). 

To overcome these issues, the National Land Survey of Finland (NLS) is looking for ways 

to improve the quality of the cadastral index map. Promising results are coming from a 

gamified crowdsourcing (Gómez-Barrón et al., 2016) platform for ameliorating the cadastral 

index map. The platform, called Pyykkijahti (Marker Quest), is a mobile web-map based 

game that citizens play. In the game, citizens can either measure border marker locations with 

smartphone positioning or mark them missing using their mobile device. The study has two 

focus points: crowdsourcing (Rönneberg & Kettunen, 2021) and location accuracy 

enhancement (Kontiokoski, 2021), the latter of which is presented here. 

Enhancement of location accuracy was studied in relation to 118 reference border markers 

positioned by professional surveyors and equipment of the NLS using real-time kinematic 

(RTK) GNSS measurements. The reference measurements were compared to smartphone 

measurements on the same markers, repeated on a marker up to nine times and averaged over 

repetitions. 26 visually clear outlier measurements were manually removed from the analysis, 

which decreased the positiong error by 2,37 m on average. Differential GNSS correction was 

tried in order to improve the positioning accuracy of smartphones but, probably due to 

suboptimal correction method and low precision of smartphone positioning chips, the 

accuracy did not improve and the correction was not considered in the analysis. Thus, the 

results reflect the pure overall positioning accuracy of citizens’ smartphones. 

322 smartphone measurements were carried out on the 118 reference markers. Their overall 

average error of positioning accuracy was a considerably high 4,18 m with a high standard 

deviation of 3,64 m. However, increasing repetitions decreased the accuracy importantly (see 

Fig. 2). In comparison to the coordinates of the current cadastral index map, positions of 

boundary markers got more accurate by 0,92 m on average. However, accuracy enhancement 

occurred only for markers with originally low accuracy in the cadastral index map (Tab. 1). 

34 markers had a position accuracy lower than 5 m and, for these, clearly more than 90% of 

marker coordinates with accuracy error higher than 5 m were enhanced by meters with the 

smartphone positioning of the Marker Quest. 

This study on positioning accuracy of citizens’ smartphones revealed a relatively low overall 
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accuracy but showed potential means for importantly higher accuracy with crowsourcing. 

Averaging over repeated measurements can lower the accuracy error to the meter level with 

enough repetitions. Introducing optimal positioning correction method and an a posteriori 

correction with satellite positions can improve the accuracy to practically significant levels 

in many surveying purposes. With 4 500 players and about 21 000 measurements in Jun-Oct 

2021, smartphone-based crowdsourcing appears as a highly potential future method for 

citizen-aided complementary surveying for national mapping agencies. 

Fig. 1: Crowdsourcing game Marker Quest has made a high number of citizens to measure cadastral 

border marker monuments. 

Fig. 2: Averaging over multiple measurements increases smartphone positioning accuracy. Results 

for ≥ 5 and ≥ 7 observations are not statistically significant because of too few observations (modified 

with permission from Kontiokoski, 2021). 

Positioning accuracy 

in the cadastral 

index map 

Border 

markers 

(pcs) 

Measurement 

accuracy error 

mean (m) 

Error in the 

cadastral index 

map mean (m) 

Enhancement of 

accuracy mean (m) 

Proportion 

of enhanced 

markers 

< 5 meters 84 3,80 1,61 -2,19 21 % 

5–10 meters 19 3,55 7,07 3,52 95 % 

> 10 meters 15 7,11 22,13 15,02 93 % 

Tab. 1: Least accurate border marker coordinates in the cadastral index map are enhanced 

importantly with smartphone positioning. 

Acknowledgement 

We are grateful for all the citizens who have used and continue to use Marker Quest eagerly. 

References 

GÓMEZ-BARRÓN, J.-P., MANSO-CALLEJO, M.-Á., ALCARRIA, R., & ITURRIOZ, T., 2016: Volunteered 

Geographic Information System Design: Project and Participation Guidelines. – ISPRS International Journal of Geo-

Information, Volume 5 (7): 108. 

KONTIOKOSKI, A., 2021: Rajamerkkien sijaintitarkkuuden parantaminen joukkoistetuilla älypuhelinmittauksilla. 

(Enhancing Location Accuracy of Boundary Markers by Crowdsourced Smartphone Positioning). – Bachelor’s 
Thesis, Lapland University Of Applied Sciences. 

RÖNNEBERG, M. & KETTUNEN, P., 2021: Enabling citizens to refine the location accuracy of cadastre boundary 

markers by gamified VGI. – Abstracts of the ICA, Volume 3: 252. https://doi.org/10.5194/ica-abs-3-252-2021 

LBS 2022

Page 155

https://doi.org/10.5194/ica-abs-3-252-2021


Trip and transportation mode detection using smartphone application 
tracking data 

AGO TOMINGA, SIIRI SILM, AGE POOM AND TIIT TAMMARU 

Department of Geography • University of Tartu • Vanemuise 46 • 50410 Tartu, Estonia 

E-Mail: ago.tominga@ut.ee

Keywords: smartphone tracking, transportation mode detection, GPS 

Abstract 

Numerous methodologies have been proposed in recent years to identify transportation 
modes based on GPS tracking data (Anda et al., 2017). Different methodologies use various 
GPS and external input variables, such as velocity, acceleration, GPS signal quality or 
transportation and bus networks, and algorithmic approaches to detect transportation modes 
(Sagedhian et al., 2021). If the methodologies require specific input data, e.g., labelled data 
from the region from which data were collected, their replication to other data sets and 
spatial contexts may be challenged (Prelipcean et al., 2017). This may be especially 
troublesome if GPS tracking device also collects data during the time the device is not 
moving because in that case the successfulness of transportation mode detection also 
depends on successful stop and trip segmentation. 

Our main research goal is to detect daily mobility profiles of transportation use. We provide 
a stepwise methodology for a combined trip- and transportation mode detection using rule-
based and machine learning based labelling methods on unlabelled GPS data. Figure 1 
presents the general workflow of our methodological workflow 

First, we detect trips, which are defined as the whole journey between two stops, and split 
each trip into components, i.e. triplegs and segments (Figure 1A). Segments are short paths 
within the trip. Each time there is a short stop within the trip surpassing a certain temporal 
threshold (20 seconds), a new segment is formed. Following segments with similar velocity 
characteristics (mean speed and 95th percentile speed) within the trip are merged into 
triplegs. Transportation mode labelling takes place on triplegs, which enables us to include 
several transportation modes within the same trip. E.g., a multimodal trip may consist of a 
walking tripleg from origin to a bus stop, a public transport tripleg in between, and an 
electric scooter/bike tripleg from a bus stop to the final destination. 

Second, we use a rule-based classification schema for the initial transportation mode 
detection (Figure 1B). We start with identitying either motorized (public transport, car) or 
active (walk, bike, e-scooter) modes of transportation based on velocity characteristics. We 
continue with comparing motorized-labelled data with general transit feed specification 
(GTFS) data to label public transportation use. Lastly, we use logical rules to restrict certain 
transitions from one transportation type to another within the same trip (e.g., it is unlikely 
that a person would shift several times from car to public transportation and vice versa 
during the same trip) and reclassify some triplegs, if needed. 

Third, we use machine learning to label those triplegs that were not distinguishable with 
rule-based classification alone based on their similarity to already labelled data. We 
implement random forest algorithm (Kuhn, 2008) using 10th and 90th percentile, median and 
standard deviation of velocity and information on following/preceeding transportation type 
of triplegs. 
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Fig. 1: The rules for trip segmentation (A) and transportation mode detection (B). 

We implement our methodology on GPS-equipped mobility data, which have been 
collected via a research-oriented smartphone application MobilityLog (Linnap and Rice, 
2014; Poom, 2019, IMO 2022). Data gathered with the application has already been used to 
understand mobility behaviour changes during the Covid-19 pandemic (Järv et al., 2021). 
Our data sample covers mobility data from more than 100 people living in Tallinn, the 
capital of Estonia, over a 13-month-period from October 2020 to November 2021. The 
mobility data set includes more than 100 million GPS points and is enriched with additional 
survey data about the socio-demographic characteristics, meaningful locations and lifestyle 
choices of study respondents. This enables us to study the longitudinal travel patterns, the 
regularity and stability of travel mode choice, and its eventual dynamics over time. 

We use sequence analysis to detect travel chains and clustering to detect daily mobility 
profiles. The results including mobility profiles are later linked with survey answers 
regarding characteristics, such as people’s gender, education level or mother tongue. 
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Summary: We present an extended conceptual framework for assessing geographic relevance in the 
context of digital transformation. 

Introduction 
With this abstract, we want to outline the opportunities and challenges of an evolved 
conceptual framework for assessing geographic relevance in the context of digital 
transformation and contribute to a debate on future ways to enhance the experience of LBS. 
Even though mobile devices are pervasive in modern life, map apps and LBS which are the 
primary source of geographic information for navigating, spatial decision-making, and 
problem-solving, have not advanced substantially since their origin at the beginning of the 
millennium (Reichenbacher, 2019) and the underlying mapping paradigm has stayed 
unchanged. 
A lack of adaptation to individuals and contexts can lead to problems in sense-making and 
usability for mobile users. Geographic relevance (GR) has been proposed as a concept to 
improve the utility and usability of LBS (e.g., De Sabbata and Reichenbacher, 2012; Raper, 
2007). Reichenbacher et al. (2016) developed and evaluated a model of GR that demonstrated 
how POIs could be dynamically selected and adapted for mobile activities dependent on 
space-time constraints. 
However, considering the fast acceleration pace of technologies, this ten-year-old model 
needs a revisit and extension for mainly two reasons: 

1. Digital transformation is a disruptive process that aims to make physical things
accessible by digital technology to link the virtual and physical world. New IT,
including big data, advanced analytics, cloud computing, AI, sensors, and 5G as
drivers of digital transformation (Dangi et al., 2022; Tao et al., 2019), offers great
potential in information sourcing, computing, and assessing GR.

2. We now have access to sensors, digital infrastructures, and real-time information to
capture user behaviour as an expression of interacting with these technologies. This
offers new opportunities for supporting mobile user activities on even finer-grained
levels. Thus, we see a clear need for new solutions to design adequate GR displays
to support mobile citizens' digital lives.

Digital transformation allows for bridging and interfacing the physical and digital world and 
including non-tangible information from the digital world (Hudson-Smith and Batty, 2022). 
With these fundamental changes, the early approach to GR falls short and needs an extension 
to address the peculiarities of a digitally transformed world. The suitability of map interfaces 
for helping mobile users understand GR informed by digital infrastructures within an urban 
context, especially in the light of digital transformation processes and infrastructures, has not 
been fully demonstrated within the LBS community. We identify three fields for extending 
the GR that could profit most from digital transformation and where we see an urgent need 
for further research: 
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From static to dynamic geographic relevance 
Since context information can increasingly use sensor data, context modelling and then 
geographic relevance modelling can also include real-time data feeds (Fabrikant, 2022). 
Sensing may occur locally (e.g., with Smartphone sensors) or in a sensor network (e.g., IoT). 
Of particular importance is real-time user behaviour in the physical, i.e., geographic space 
(mobility), and in the digital space (interaction with apps, databases, websites etc., through 
Smartphones as mediators and interfaces). 

Context input from the physical and the digital world 
In addition to context information sensed from the physical environment, GR modelling can 
also include a digitally mediated context (e.g., information about places from social 
networks; mobile communication at places or about places, such as text messages, social 
network posts, or tweets). Moreover, GR can use digital context, i.e., user behaviour in the 
digital world.  Location can act as a connector between the digital and the physical. Physical 
entities and their representations in the digital world can mutually serve as contextual 
information (Bartling et al., 2022). They can also be input into an extended model of GR. 

Geographic relevance in geographic space, digital space, and hybrid space 
We still know little about physical and digital context correspondence, i.e., which parts are 
crucial for mutual representation. Moreover, since many activities that users have performed 
and could only perform in physical space are now increasingly shifted to the digital world, 
the geographic relevance has to be assessed from physical context factors and needs to 
include the digital context. This can be user behaviour sourced from the smartphone's 
interactions as an interface to the digital world. Also, the interplay of activities in the hybrid 
space (the overlap of physical and digital space) is a new field for GR (Zingaro and 
Reichenbacher, 2022). 
Eventually, an extended GR model can use and integrate such data of users' digital behaviour 
on their smartphones in addition to the mobility factors and the geographic environment. This 
will help to improve the GR model and finally allow for better visualising geographic 
relevance in LBS and mobile map apps based on real-time user behaviour in physical and 
digital space. 
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Summary: Modelling and forecasting citywide crowd information (e.g., crowd volume of a region, 
the inflow of crowds into a region, outflow of crowds from a region) at a fine spatio-temporal scale is 
crucial for urban and transport planning, city management, public safety, and traffic management. 
However, this is a challenging task due to its complex spatial and temporal dependences. Recently, 
more and more complex predictive models (e.g., with more hidden layers, sophisticated structures, or 
supplement information) have been proposed in the literature. However, they often suffer from the 
problem of high training time cost, and thus more computational resources are required and more 
energy is consumed, which is unfriendly to the limited computational resources or users who just 
expect a good accuracy under limited time cost. How to reduce training time cost while maintaining 
excellent predictive accuracy is still an open research challenge. 

To tackle this open research challenge, this study proposes a novel and efficient neural network 
model for forecasting crowd information in citywide environments, with the aims to reduce the train-
ing time cost while maintaining a better predictive accuracy than the baseline models. The proposed 
model (see Figure 1 for its architecture) combines recurrent neural networks (i.e., GRU) and convo-
lutional neural network (CNN) to jointly capture the complex spatio-temporal dependences of crowd 
information. More importantly, a k-nearest neighbors (k-NN) module, which is shown to be an effec-
tive and efficient conventional predictive method in the literature, is added to the model to further 
capture more ‘neighborhoods’ features and accelerate the convergence of the loss function, thus 
reducing the training time cost of the proposed model and improving its predictive accuracy. 

The evaluation with two different datasets in two different cities shows that compared to the state-of-
the-art baselines, our model has better predictive accuracy (reducing the mean absolute errors MAEs 
by 20.99% on average) and a lower training time cost (reducing the time cost to only 26.16% on 
average of that of the baselines). Our model also has better abilities in making accurate predictions 
with low time cost under the influences of large-scale special events (when massive crowds of people 
are gathering in a short time) and for regions with high and irregular crowd changes. In summary, 
our model is an effective, efficient, and reliable method for forecasting citywide crowd information at 
a fine spatio-temporal scale, and has a high potential for many applications, such as city manage-
ment, public safety, and transportation. 

This presentation is based on the following publication: Xucai Zhang, Yeran Sun, Fangli Guan, Kai 
Chen, Frank Witlox, Haosheng Huang (2022), Forecasting the crowd: An effective and efficient 
neural network for citywide crowd information prediction at afine spatio-temporal scale. Transporta-
tion Research Part C: Emerging Technologies. DOI: https://doi.org/10.1016/j.trc.2022.103854. 
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Fig. 1: Architecture of the proposed prediction method. GRU: gated recurrent unit; Conv: Convolu- 
tion; k-NN: k-nearest neighbors. 
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Summary: There is vast and growing data of citizens’ personal level movement data that could be
used for example to improve the cyclability of cities and thus mitigate climate change. We present a
pilot of an open movement data repository to which citizens can donate their movement data in a
privacy-preserving manner.

Introduction
The EU Commission’s Climate Target Plan to cut greenhouse gas (GHG) emissions by at
least 55% by 2030 leads the way for Europe to become climate neutral by 2050 (Climate
Action). In recent years, more than 20% of the GHG emissions have originated from land
transport (ICCT 2021). Reaching the ambitious goal of climate neutrality would need a
revolution in present day thinking of personal mobility and it would also need invention
and utilisation of a number of technological disruptions leading the way to more efficient
use of natural resources, but also a better cost-efficiency road infrastructure investments.
One of such innovations would be the open use of personal level movement data without
compromising privacy.
Smart devices equipped with Global Navigation Satellite System (GNSS) receivers are
ubiquitous in modern society. There are numerous applications that citizens are using to
record their movement. Such trajectory data would provide invaluable insights into the
non-motorized traffic in a city. Heatmaps of a number of service providers (e.g. Strava,
Endomondo, Suunto) have already shown their value for traffic planning and the method
provides a pragmatic solution to utilise spatially aggregated trajectory data without
compromising privacy (Oksanen et al. 2015). More versatile services, such as Strava Metro
(Strava 2022), are available, but access is limited only to “organizations that plan, own, or
maintain active transportation infrastructure or seek to positively influence planning
processes” leaving e.g. start-ups and researchers out, who could provide innovative uses of
the data.
Analysing detailed trajectory data provides supreme application potential over commonly
used heatmaps. For example, it would be possible to determine the most popular routes
between regions and on which sections of the routes cyclists can travel with their desired
speed and on which their travel is slowed down. One could even study what kind of turns
cyclists make on specific street junctions and identify the junctions with high potential for
collisions. These kinds of analyses would provide completely new input for improving the
cyclability in cities.
The big ethical problem with such trajectory data is that it is highly personal and sharing
citizens’ movement data would compromise their privacy. For example, if a citizen has
recorded their commuting trip, pinpointing their home and work place locations is often
trivial. Therefore, it is important to adhere to the General Data Protection Regulation
(GDPR) of the EU.
Currently the gathered data is spread among different actors. Many are commercial and do
not provide any practical method to access the data, even if the data subjects have set their
data public. The end result is that citizens record their movement and the data grows
constantly, but there is no practical way to utilize it and the innovation potential of the data
remains locked.
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This situation motivated us to develop our own personal trajectory sharing service. What
differentiates our approach from the others is the data ownership. Our aim is to obfuscate
the donated trajectories and share them as open data. The challenge is to conserve the utility
of the data but at the same time respect the privacy of the participants.

Technical aspects of the pilot service
The service (Figure 1), built using open source libraries and programs, consists of four
modules: 1) Donation module, 2) Obfuscation module, 3) Statistics module, and 4) Open
sharing module. In the Donation module a user can donate trajectories by uploading gpx
files on the donation page. The Obfuscation module removes personal identifiers (incl.
spatial and temporal aspects) from the data. The Statistics module provides users
descriptive statistics of their uploaded data. Finally, the Open sharing module wraps the
obfuscated trajectories into a downloadable format for registered users. For registration, the
users are required to create an account and provide a working email address to use the
service and explicitly give their consent before they can donate any trajectories. Email also
provides a way for users to request their data to be deleted.

Figure 1. Entrance of the Geoprivacy pilot service for sharing personal level location data.

The donation process
When a user decides to upload her trajectories to the service, the backend will analyse and
process the data and return three versions of obfuscated trajectories for each of the original
trajectory. Then the user can view the results on a map and decide which versions (if any)
they are comfortable with donating to the open repository.

Obfuscation methods
When the backend receives data to be processed, we will use two methods for obfuscation.
First, we truncate the trajectory based on the buildings near the endpoints of the trajectory
and on the possible long stops along the trajectory using the S-TT algorithm (Brauer et al.
2022). It requires comprehensive building data from the area where we are performing the
truncation, and therefore at the pilot stage it is only possible to donate trajectories that are
located in Finland.
Second, we shift the truncated trajectories in time to match the first trajectory point to the
closest one of the predefined, evenly spaced times of the day. This makes it more difficult
to link the obfuscated trajectories to some external data, e.g. surveillance camera footage,
but still allows to study general temporal aspects of the trajectory.
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Next steps
We are building a service, where citizens can obfuscate their personal movement
trajectories and donate them into an open trajectory database. The service is scheduled to
launch this Autumn 2022. At first, only data within the borders of Finland will be
considered.
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Cycling as a healthy, sustainable mean of transport has been getting increasing political at-

tention throughout the last decade, for example in the European green deal (European Com-

mission 2021). The goal of increasing the share of cycling among different transportation 

modes requires extensive data on cycling infrastructure (Lee et al. 2014). Furthermore, as the 

real and perceived dangers of riding a bicycle in traffic are a major deterrent against cycling 

(Ng, Debnath, and Heesch 2017), the development of car-like assistance and especially warn-

ing systems is a logical consequence. Development of such systems requires data on bicycle 

positions and optimally their surroundings. So-called instrumented probe bicycles fitted with 

a variety of sensors present an effective tool to collect the needed data for both use cases. 

One of the most frequently pursued use case analyses accelerometer or inertial measurement 

unit (IMU) data for detecting infrastructure surface quality (Bíl, Andrášik, and Kubeček 

2015; Neto et al. 2018). In recent years, the built-in IMUs of smartphones are used more than 

dedicated sensor kits (Wijerathne et al. 2018; Zang et al. 2018). Systems aiming at a compre-

hensive analysis of the infrastructure often incorporate cameras (Yamanaka, Xiaodong, and 

Sanada 2013; Nuñez, Bisconsini, and Rodrigues da Silva 2020). Some attempts at developing 

warning systems utilize laser-based range finders (Jeon and Rajamani 2019) or radar (En-

glund et al. 2019) for detecting vehicles. More often, LiDAR sensors are used to this end 

(Dozza et al. 2016; Van Brummelen et al. 2016; Xie, Jeon, and Rajamani 2021). To profit 

from recent advances in vehicle-to-everything (V2X) cooperative intelligent transport sys-

tems (C-ITS) communication, probe bicycles need to support the corresponding messages 

(Casademont et al. 2019). 

One sensor shared by all of these systems are localization sensors (e.g. global navigation 

satellite system (GNSS) receivers). For infrastructure-segment-wise data collection, road ac-

curacy with a localization error below five meters, is sufficient as showcased by multiple 

systems from literature (Wijerathne et al. 2018; Zang et al. 2018; Kranzinger and Leitinger 

2021). For assistive and warning systems, a required localization accuracy of less than one 

meter is reported (Dardari et al. 2017; Miah et al. 2020). However, we consider the ability to 

match probe bicycles to cycle lanes with widths around one meter as necessary and thus 

define cycle lane accuracy as a localization error below 0.5 meters. To the best of our 

knowledge, a localization of single infrastructure elements like manhole covers or potholes 

does not exist in literature. To this end pothole accuracy with a localization error below 0.1 

meters is desirable. 

Fig. 1: fLTR Smartphone, XSens, Holoscene X (photos: own, Boréal Bikes) 

To assess the suitability of different systems for different use cases, we compared the self-

localization accuracy of three GNSS receivers depicted in fig. 1: a Xiaomi Mi9, a smartphone 

with an IMU-supported dual frequency GNSS; an XSens MTi 680G RTK, an RTK-corrected 
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and INS-supported multi-frequency GNSS; and a u-blox ZED-F9P GNSS receiver. The latter 

receiver is integrated into the Holoscene X by Boréal Bikes, an instrumented probe bicycle 

fitted with multiple LiDARs, cameras, IMUs and a C-ITS communications on-board unit. 

The smartphone is mounted on the handlebar and the XSens on the helmet of the cyclist. The 

experiments are conducted in an urban as well as in a rural environment and comprise test 

drives in surroundings with high buildings, an underpass and without buildings. Each of these 

three scenarios is repeated six times at three different points in time to account for varying 

satellite constellations (Štern & Kos 2018). The accuracy is assessed by measuring the cen-

treline, longitudinal, and boundary overlapping error distance using a high-definition (HD) 

map as ground-truth, as suggested for assessing the self-localization accuracy of autonomous 

vehicles (Rehrl and Gröchenig 2021). The cyclist is asked to ride along the centreline of the 

bicycle lane and to stop for 5 seconds at predefined positions. The centreline error distance 

then refers to the deviation of the measured trajectory to the centreline of a lane-level HD 

map. The distance between the measured stop location and the predefined stop point repre-

sents the longitudinal error distance. The boundary overlapping error distance evaluates the 

lane-keeping and is deduced by the overlapping distance of the 2D bounding box of the bi-

cycle with the bicycle lane boundaries. 

We expect GNSS accuracy of smartphones to meet road accuracy, while for cycle lane accu-

racy an RTK-corrected and INS-supported GNSS receiver is assumed to be necessary. 

Whether any of the tested systems is capable of pothole accuracy needs to be evaluated. The 

establishment of required accuracy levels of localization systems and a corresponding eval-

uation method can be used to select suitable hardware for different use cases of probe bicy-

cles. The exemplary analysis of three localization systems serves as both a test of the evalu-

ation method and guidance on the accuracy level to be expected from different types of lo-

calization systems. 
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